Web technologies for environmental Big Data

dc.bibliographicCitation.date2015
dc.bibliographicCitation.firstPage185
dc.bibliographicCitation.journalTitleEnvironmental modelling & softwareeng
dc.bibliographicCitation.lastPage198
dc.bibliographicCitation.volume63
dc.contributor.authorVitolo, Claudia
dc.contributor.authorElkhatib, Yehia
dc.contributor.authorReusser, Dominik
dc.contributor.authorMacleod, Christopher J.A.
dc.contributor.authorBuytaert, Wouter
dc.date.accessioned2022-07-04T06:20:42Z
dc.date.available2022-07-04T06:20:42Z
dc.date.issued2014
dc.description.abstractRecent evolutions in computing science and web technology provide the environmental community with continuously expanding resources for data collection and analysis that pose unprecedented challenges to the design of analysis methods, workflows, and interaction with data sets. In the light of the recent UK Research Council funded Environmental Virtual Observatory pilot project, this paper gives an overview of currently available implementations related to web-based technologies for processing large and heterogeneous datasets and discuss their relevance within the context of environmental data processing, simulation and prediction. We found that, the processing of the simple datasets used in the pilot proved to be relatively straightforward using a combination of R, RPy2, PyWPS and PostgreSQL. However, the use of NoSQL databases and more versatile frameworks such as OGC standard based implementations may provide a wider and more flexible set of features that particularly facilitate working with larger volumes and more heterogeneous data sources.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9479
dc.identifier.urihttps://doi.org/10.34657/8517
dc.language.isoengeng
dc.publisherAmsterdam [u.a.] : Elsevier Science
dc.relation.doihttps://doi.org/10.1016/j.envsoft.2014.10.007
dc.relation.essn1873-6726
dc.rights.licenseCC BY 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc690
dc.subject.ddc004
dc.subject.otherBig Dataeng
dc.subject.otherOGC standardseng
dc.subject.otherWeb serviceseng
dc.subject.otherWeb-based modellingeng
dc.titleWeb technologies for environmental Big Dataeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKger
wgl.subjectInformatikger
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Web_technologies_for_environmental_Big_Data.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description: