Informatik

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 226
  • Item
    Redefining nursing skills in AI and robotisation, with a particular focus on conditions requiring long-term care
    (Nyíregyháza : University of Debrecen Faculty of Health Department of Gerontology, 2022) Szőllősi, Anna; Kismihók, Gábor; Keszler, Ádám; Karamánné Pakai, Annamária; Lukács, Miklós; Szatmári, Angelika; Ujváriné Siket, Adrienn
    Owing to the enormous improvements in health and lifestyle over the last century, the average age has increased. Although longevity is an important achievement of the modern age, it is a challenge for the care of an ageing population. As people in the richest parts of the world live longer, there is a growing shortage of carers for an ageing population. This paper reviews the literature and describes the global challenges of caregiving, future issues in elderly care, the emergence of robotization in the field of nursing care and how this can contribute to improving the quality of care for the older people. It also discusses the experience of using robots in international and domestic elderly care and briefly describes how the use of AI-based technology has contributed to improving the effectiveness of care in the context of the coronavirus epidemic. The paper concludes by presenting a vision and directions for training development for Advance Practice Nurses, Register Nurses and post-secondary nurses, and other health care professionals to improve attitudes, enhance knowledge, and develop services to improve elderly care.
  • Item
    Digitalisierung in den Gesundheitsberufen
    ([Leverkusen] : Verlag Barbara Budrich, 2024) Weyland, Ulrike; Koschel, Wilhelm; Reiber, Karin; Dorin, Lena; Peters, Miriam; Arndt, Laura; Behr, Dominik; Bergmann, Dana; Buchmann, Ulrike; Ebbighausen, Marc; Engl, Anna-Teresa; Ettl, Katrin; Fathi, Madjid; Fischer, Andreas; Freese, Christiane; Haussmann, Andreas; Hiestand, Stefanie; Hofstetter, Sebastian; Hüttner, Aneli; Jahn, Patrick; Jürgensen, Anke; Kaiser, Sophie; Kaufhold, Marisa; Kismihók, Gábor; Klus, Christina; Kobus, Julia; Köhler, Sonja; Kraft, Bernhard; Makowsky, Katja; Meng, Michael; Michel, Natalie; Nagel, Lisa; Nauerth, Annette; Nerdel, Claudia; Paulicke, Denny; Preißler, Ronja; Rasheed, Hasan A.; Rechl, Friederike; Richter, Katja E.; Richter, Patrick; Schröder, Martina; Schröer, Laura; Schwarz, Karsten; Seltrecht, Astrid; Steindorff, Jenny-Victoria; Stirner, Alexander; Stoevesandt, Dietrich; Völz, Silke; Wagner-Herrbach, Cornelia; Weber, Christian; Wittmann, Eveline; Zepelin, Lyn Anne von; Ziegler, Sven; Zilezinski, Max
    Digitale Technologien führen zu veränderten Kommunikations-, Lern- und Arbeitsformen. Für die Gesundheitsberufe ergeben sich durch die Digitalisierung vielfältige Veränderungen und Herausforderungen, die bei positiver Wendung auch als Chance verstanden werden können. Wenn Digitalisierungsprozesse in den Gesundheitsberufen aktiv durch die Berufsgruppen mitgestaltet werden, so können positive Ansätze für die Versorgung hilfs- und pflegebedürftiger Menschen entwickelt werden, aber ebenso für die Professionalisierung der Fachkräfte und des beruflichen Bildungspersonals. Dieser Band dokumentiert die Beiträge zum AG-BFN-Forum „Digitalisierung in den Gesundheitsberufen“, das im Oktober 2021 an der Universität Münster stattfand. Im Fokus stehen aktuelle Entwicklungen in den Bereichen Digitalität in pflege- und gesundheitsberuflichen Handlungsfeldern, Professionalisierung des Bildungspersonals und digital gestützte Lehr-/Lernszenarien in den Gesundheitsberufen.
  • Item
    Traditional Machine Learning Models and Bidirectional Encoder Representations From Transformer (BERT)-Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study
    (Toronto : [Verlag nicht ermittelbar], 2022) Benítez-Andrades, José Alberto; Alija-Pérez, José-Manuel; Vidal, Maria-Esther; Pastor-Vargas, Rafael; García-Ordás, María Teresa
    Background: Eating disorders affect an increasing number of people. Social networks provide information that can help. Objective: We aimed to find machine learning models capable of efficiently categorizing tweets about eating disorders domain. Methods: We collected tweets related to eating disorders, for 3 consecutive months. After preprocessing, a subset of 2000 tweets was labeled: (1) messages written by people suffering from eating disorders or not, (2) messages promoting suffering from eating disorders or not, (3) informative messages or not, and (4) scientific or nonscientific messages. Traditional machine learning and deep learning models were used to classify tweets. We evaluated accuracy, F1 score, and computational time for each model. Results: A total of 1,058,957 tweets related to eating disorders were collected. were obtained in the 4 categorizations, with The bidirectional encoder representations from transformer-based models had the best score among the machine learning and deep learning techniques applied to the 4 categorization tasks (F1 scores 71.1%-86.4%). Conclusions: Bidirectional encoder representations from transformer-based models have better performance, although their computational cost is significantly higher than those of traditional techniques, in classifying eating disorder-related tweets.
  • Item
    An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study
    (Basel : MDPI, 2022) Torrente, María; Sousa, Pedro A.; Hernández, Roberto; Blanco, Mariola; Calvo, Virginia; Collazo, Ana; Guerreiro, Gracinda R.; Núñez, Beatriz; Pimentao, Joao; Sánchez, Juan Cristóbal; Campos, Manuel; Costabello, Luca; Novacek, Vit; Menasalvas, Ernestina; Vidal, María Esther; Provencio, Mariano
    Background: Artificial intelligence (AI) has contributed substantially in recent years to the resolution of different biomedical problems, including cancer. However, AI tools with significant and widespread impact in oncology remain scarce. The goal of this study is to present an AI-based solution tool for cancer patients data analysis that assists clinicians in identifying the clinical factors associated with poor prognosis, relapse and survival, and to develop a prognostic model that stratifies patients by risk. Materials and Methods: We used clinical data from 5275 patients diagnosed with non-small cell lung cancer, breast cancer, and non-Hodgkin lymphoma at Hospital Universitario Puerta de Hierro-Majadahonda. Accessible clinical parameters measured with a wearable device and quality of life questionnaires data were also collected. Results: Using an AI-tool, data from 5275 cancer patients were analyzed, integrating clinical data, questionnaires data, and data collected from wearable devices. Descriptive analyses were performed in order to explore the patients’ characteristics, survival probabilities were calculated, and a prognostic model identified low and high-risk profile patients. Conclusion: Overall, the reconstruction of the population’s risk profile for the cancer-specific predictive model was achieved and proved useful in clinical practice using artificial intelligence. It has potential application in clinical settings to improve risk stratification, early detection, and surveillance management of cancer patients.
  • Item
    Enhancing Knowledge Graph Extraction and Validation From Scholarly Publications Using Bibliographic Metadata
    (Lausanne : Frontiers Media, 2021) Turki, Houcemeddine; Hadj Taieb, Mohamed Ali; Ben Aouicha, Mohamed; Fraumann, Grischa; Hauschke, Christian; Heller, Lambert
    [No abstract available]