Clinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Host

dc.bibliographicCitation.firstPage135eng
dc.bibliographicCitation.issue3eng
dc.bibliographicCitation.journalTitleToxinseng
dc.bibliographicCitation.lastPage263eng
dc.bibliographicCitation.volume11eng
dc.contributor.authorTuchscherr, Lorena
dc.contributor.authorPöllath, Christine
dc.contributor.authorSiegmund, Anke
dc.contributor.authorDeinhardt-Emmer, Stefanie
dc.contributor.authorHoerr, Verena
dc.contributor.authorSvensson, Carl-Magnus
dc.contributor.authorFigge, Marc Thilo
dc.contributor.authorMonecke, Stefan
dc.contributor.authorLöffler, Bettina
dc.date.accessioned2020-01-03T14:03:32Z
dc.date.available2020-01-03T14:03:32Z
dc.date.issued2019
dc.description.abstractStaphylococcus aureus colonizes epithelial surfaces, but it can also cause severe infections. The aim of this work was to investigate whether bacterial virulence correlates with defined types of tissue infections. For this, we collected 10–12 clinical S. aureus strains each from nasal colonization, and from patients with endoprosthesis infection, hematogenous osteomyelitis, and sepsis. All strains were characterized by genotypic analysis, and by the expression of virulence factors. The host–pathogen interaction was studied through several functional assays in osteoblast cultures. Additionally, selected strains were tested in a murine sepsis/osteomyelitis model. We did not find characteristic bacterial features for the defined infection types; rather, a wide range in all strain collections regarding cytotoxicity and invasiveness was observed. Interestingly, all strains were able to persist and to form small colony variants (SCVs). However, the low-cytotoxicity strains survived in higher numbers, and were less efficiently cleared by the host than the highly cytotoxic strains. In summary, our results indicate that not only destructive, but also low-cytotoxicity strains are able to induce infections. The low-cytotoxicity strains can successfully survive, and are less efficiently cleared from the host than the highly cytotoxic strains, which represent a source for chronic infections. The understanding of this interplay/evolution between the host and the pathogen during infection, with specific attention towards low-cytotoxicity isolates, will help to optimize treatment strategies for invasive and therapy-refractory infection courses.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/93
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4822
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/toxins11030135
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc610eng
dc.subject.otherS. aureuseng
dc.subject.otherlow cytotoxic strainseng
dc.subject.otherchronic infectioneng
dc.titleClinical S. aureus Isolates Vary in Their Virulence to Promote Adaptation to the Hosteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clinical S. aureus Isolates Vary in Their Virulence.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
Description: