Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models

dc.bibliographicCitation.volume1959
dc.contributor.authorGiese, Wolfgang
dc.contributor.authorEigel, Martin
dc.contributor.authorWesterheide, Sebastian
dc.contributor.authorEngwer, Christian
dc.contributor.authorKlipp, Edda
dc.date.accessioned2016-03-24T17:37:11Z
dc.date.available2019-06-28T08:14:46Z
dc.date.issued2014
dc.description.abstractIn silico experiments bear the potential to further the understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results for the chosen models. We consider cell polarization and spatial reorganization of membrane proteins which are fundamental for cell division, chemotaxis and morphogenesis. Our computational study is motivated by mating and budding processes of S. cerevisiae. In these processes a key player during the initial phase of polarization is the GTPase Cdc42 which occurs in an active membrane-bound form and an inactive cytosolic form. We use partial differential equations to describe the membrane-cytosol shuttling of Cdc42 during budding as well as mating of yeast. The membrane is modeled as a thin layer that only allows lateral diffusion and the cytosol is modeled as a volume. We investigate how cell shape and diffusion barriers like septin structures or bud scars influence Cdc42 cluster formation and subsequent polarization of the yeast cell. Since the details of the binding kinetics of cytosolic proteins to the membrane are still controversial, we employ two conceptual models which assume different binding kinetics. An extensive set of in silico experiments with different modeling hypotheses illustrate the qualitative dependence of cell polarization on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. We examine that spatial inhomogenities essentially determine the location of Cdc42 cluster formation and spatial properties are crucial for the realistic description of the polarization process in cells. In particular, our computer simulations suggest that diffusion barriers are essential for the yeast cell to grow a protrusion.eng
dc.description.versionsubmittedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2548
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2990
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.ispartofseriesPreprint / Weierstraß-Institut für Angewandte Analysis und Stochastik , Volume 1959, ISSN 2198-5855eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subjectPolarization modelseng
dc.subjectsurface FEMeng
dc.subjectbulk-surface PDReng
dc.subjectcomputer simulationeng
dc.subjectspatial simulationeng
dc.subjectspatial inhomogenitieseng
dc.subjectCdc42eng
dc.subject.ddc510eng
dc.titleInfluence of cell shape, inhomogeneities and diffusion barriers in cell polarization modelseng
dc.typereporteng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitlePreprint / Weierstraß-Institut für Angewandte Analysis und Stochastikeng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
798048476.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
Description:
Collections