Generate FAIR Literature Surveys with Scholarly Knowledge Graphs
dc.bibliographicCitation.bookTitle | JCDL '20: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 | eng |
dc.bibliographicCitation.firstPage | 97 | eng |
dc.bibliographicCitation.lastPage | 106 | eng |
dc.contributor.author | Oelen, Allard | |
dc.contributor.author | Jaradeh, Mohamad Yaser | |
dc.contributor.author | Stocker, Markus | |
dc.contributor.author | Auer, Sören | |
dc.date.accessioned | 2021-04-28T14:11:02Z | |
dc.date.available | 2021-04-28T14:11:02Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Reviewing scientific literature is a cumbersome, time consuming but crucial activity in research. Leveraging a scholarly knowledge graph, we present a methodology and a system for comparing scholarly literature, in particular research contributions describing the addressed problem, utilized materials, employed methods and yielded results. The system can be used by researchers to quickly get familiar with existing work in a specific research domain (e.g., a concrete research question or hypothesis). Additionally, it can be used to publish literature surveys following the FAIR Data Principles. The methodology to create a research contribution comparison consists of multiple tasks, specifically: (a) finding similar contributions, (b) aligning contribution descriptions, (c) visualizing and finally (d) publishing the comparison. The methodology is implemented within the Open Research Knowledge Graph (ORKG), a scholarly infrastructure that enables researchers to collaboratively describe, find and compare research contributions. We evaluate the implementation using data extracted from published review articles. The evaluation also addresses the FAIRness of comparisons published with the ORKG. | eng |
dc.description.version | acceptedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/6164 | |
dc.identifier.uri | https://doi.org/10.34657/5212 | |
dc.language.iso | eng | eng |
dc.publisher | New York City, NY : Association for Computing Machinery | eng |
dc.relation.doi | https://doi.org/10.1145/3383583.3398520 | |
dc.relation.isbn | 978-1-4503-7585-6 | |
dc.rights.license | Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | eng |
dc.subject.ddc | 020 | eng |
dc.subject.gnd | Konferenzschrift | ger |
dc.subject.other | Scholarly Knowledge Comparison | eng |
dc.subject.other | Scholarly Information Systems | eng |
dc.subject.other | Comparison User Interface | eng |
dc.subject.other | Digital Libraries | eng |
dc.subject.other | Scholarly Communication | eng |
dc.subject.other | FAIR Data Principles | eng |
dc.title | Generate FAIR Literature Surveys with Scholarly Knowledge Graphs | eng |
dc.type | BookPart | eng |
dc.type | Text | eng |
dcterms.event | JCDL '20: The ACM/IEEE Joint Conference on Digital Libraries in 2020, August 2020, online | |
tib.accessRights | openAccess | eng |
wgl.contributor | TIB | eng |
wgl.subject | Erziehung, Schul- und Bildungswesen | eng |
wgl.type | Buchkapitel / Sammelwerksbeitrag | eng |
wgl.type | Konferenzbeitrag | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Oelen2020, Postprint, Generate FAIR Literature Surveys.pdf
- Size:
- 1.34 MB
- Format:
- Adobe Portable Document Format
- Description: