Quantum Hall effect in a high-mobility two-dimensional electron gas on the surface of a cylinder
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The quantum Hall effect is investigated in a high-mobility two-dimensional electron gas on the surface of a cylinder. The novel topology leads to a spatially varying filling factor along the current path. The resulting inhomogeneous current-density distribution gives rise to additional features in the magneto-transport, such as resistance asymmetry and modified longitudinal resistances. We experimentally demonstrate that the asymmetry relations satisfied in the integer filling factor regime are valid also in the transition regime to non-integer filling factors, thereby suggesting a more general form of these asymmetry relations. A model is developed based on the screening theory of the integer quantum Hall effect that allows the self-consistent calculation of the local electron density and thereby the local current density including the current along incompressible stripes. The model, which also includes the so-called `static skin effect' to account for the current density distribution in the compressible regions, is capable of explaining the main experimental observations. Due to the existence of an incompressible-compressible transition in the bulk, the system behaves always metal-like in contrast to the conventional Landauer-Buettiker description, in which the bulk remains completely insulating throughout the quantized Hall plateau regime.
Description
Keywords
Citation
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.