Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds

dc.bibliographicCitation.firstPage1740010eng
dc.bibliographicCitation.issue03eng
dc.bibliographicCitation.volume07eng
dc.contributor.authorSeifert, T.
dc.contributor.authorMartens, U.
dc.contributor.authorGünther, S.
dc.contributor.authorSchoen, M.A.W.
dc.contributor.authorRadu, F.
dc.contributor.authorChen, X.Z.
dc.contributor.authorLucas, I.
dc.contributor.authorRamos, R.
dc.contributor.authorAguirre, M.H.
dc.contributor.authorAlgarabel, P.A.
dc.contributor.authorAnadón, A.
dc.contributor.authorKörner, H.
dc.contributor.authorWalowski, J.
dc.contributor.authorBack, C.
dc.contributor.authorIbarra, M.R.
dc.contributor.authorMorellón, L.
dc.contributor.authorSaitoh, E.
dc.contributor.authorWolf, M.
dc.contributor.authorSong, C.
dc.contributor.authorUchida, K.
dc.contributor.authorMünzenberg, M.
dc.contributor.authorRadu, I.
dc.contributor.authorKampfrath, T.
dc.date.accessioned2023-01-05T13:27:50Z
dc.date.available2023-01-05T13:27:50Z
dc.date.issued2017-08-23
dc.description.abstractTerahertz emission spectroscopy (TES) of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin–orbit interaction at highest frequencies, but has also paved the way for applications such as efficient and ultrabroadband emitters of terahertz (THz) electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of THz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo5), gadolinium iron (Gd24Fe76), magnetite (Fe3O4) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet’s conduction electrons, but also on the specific interface conditions, thereby suggesting TES to be a highly interface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10781
dc.identifier.urihttp://dx.doi.org/10.34657/9807
dc.language.isoengeng
dc.publisherSingapore [u.a.] : World Scientific Publishingeng
dc.relation.doihttps://doi.org/10.1142/s2010324717400100
dc.relation.essn2010-3255
dc.relation.ispartofseriesSPIN 07 (2017), Nr. 03eng
dc.relation.issn2010-3247
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectfemtomagnetismeng
dc.subjectheterostructureseng
dc.subjectspin Hall effecteng
dc.subjectspin Seebeck effecteng
dc.subjectTerahertz spintronicseng
dc.subject.ddc530eng
dc.titleTerahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compoundseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleSPINeng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Terahertz_Spin_Currents_and_Inverse_Spin_Hall_Effect.pdf
Size:
488.97 KB
Format:
Adobe Portable Document Format
Description:
Collections