Self-intersection local times of random walks : exponential moments in subcritical dimensions

Loading...
Thumbnail Image

Date

Volume

1532

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

Fix p>1, not necessarily integer, with p(d-2)0 that are bounded from above, possibly tending to zero. The speed is identified in terms of mixed powers of t and theta_t, and the precise rate is characterized in terms of a variational formula, which is in close connection to the it Gagliardo-Nirenberg inequality. As a corollary, we obtain a large-deviation principle for ell_t _p/(t r_t) for deviation functions r_t satisfying t r_tggE[ ell_t _p]. Informally, it turns out that the random walk homogeneously squeezes in a t-dependent box with diameter of order ll t^1/d to produce the required amount of self-intersections. Our main tool is an upper bound for the joint density of the local times of the walk.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.