Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition

dc.bibliographicCitation.firstPage360eng
dc.bibliographicCitation.issue1eng
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.lastPage319eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorZhang, Z.-Q.
dc.contributor.authorSong, K.-K.
dc.contributor.authorGuo, S.
dc.contributor.authorXue, Q.-S.
dc.contributor.authorXing, H.
dc.contributor.authorCao, C.-D.
dc.contributor.authorDai, F.-P.
dc.contributor.authorVölker, B.
dc.contributor.authorHohenwarter, A.
dc.contributor.authorMaity, T.
dc.contributor.authorChawake, N.
dc.contributor.authorKim, J.-T.
dc.contributor.authorWang, L.
dc.contributor.authorKaban, I.
dc.contributor.authorEckert, J.
dc.date.accessioned2020-07-18T06:12:43Z
dc.date.available2020-07-18T06:12:43Z
dc.date.issued2019
dc.description.abstractHigh-entropy alloys (HEAs) have inspired considerable interest due to their attractive physical and mechanical properties. In this work, the microstructural evolution induced by different heat treatments on rapidly solidified hypoeutectic precursors of a Fe26.7Co26.7Ni26.7Si8.9B11 HEA is investigated and correlated with the corresponding mechanical properties. The microstructures of the rapidly solidified precursors are composed of primary fcc solid solution dendrites embedded in a eutectic matrix. When the samples are annealed at different temperatures after furnace cooling or quenching, respectively, the eutectic structure gradually decomposes into fcc, tetragonal (Fe,Co)2B, and hexagonal Ni31Si12 crystals with increasing annealing temperature, leading to a gradual increase of the content of the fcc crystals and both their aggregation and coarsening. Then the dominant structural framework gradually transforms from eutectic structures to fcc dendrites and ultimately the (Fe,Co)2B crystals become isolated as dominant reinforcement particles distributed in the interdendritic regions. This gradual microstructural transition from hypoeutectic to quasi-duplex structures leads to the change of the dominant deformation mechanism from crack-controlled to dislocation-dominated deformation, which allows to control both ductility and strength in a wide range. Hence, this study provides some guideline for how to tune the microstructure and mechanical properties of HEAs.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3650
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5021
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41598-018-36464-3
dc.relation.issn2045-2322
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.otherHigh-entropy alloys (HEAs)eng
dc.subject.othermicrostructural evolutioneng
dc.subject.otherheat treatmentseng
dc.titleOptimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transitioneng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang et al 2019, Optimizing mechanical properties.pdf
Size:
5.15 MB
Format:
Adobe Portable Document Format
Description:
Collections