Generalized Scharfetter--Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2605 | |
dc.contributor.author | Kantner, Markus | |
dc.date.accessioned | 2022-06-23T14:30:44Z | |
dc.date.available | 2022-06-23T14:30:44Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Many challenges faced in today's semiconductor devices are related to self-heating phenomena. The optimization of device designs can be assisted by numerical simulations using the non-isothermal drift-diffusion system, where the magnitude of the thermoelectric cross effects is controlled by the Seebeck coefficient. We show that the model equations take a remarkably simple form when assuming the so-called Kelvin formula for the Seebeck coefficient. The corresponding heat generation rate involves exactly the three classically known self-heating effects, namely Joule, recombination and Thomson--Peltier heating, without any further (transient) contributions. Moreover, the thermal driving force in the electrical current density expressions can be entirely absorbed in the (nonlinear) diffusion coefficient via a generalized Einstein relation. The efficient numerical simulation relies on an accurate and robust discretization technique for the fluxes (finite volume Scharfetter--Gummel method), which allows to cope with the typically stiff solutions of the semiconductor device equations. We derive two non-isothermal generalizations of the Scharfetter--Gummel scheme for degenerate semiconductors (Fermi--Dirac statistics) obeying the Kelvin formula. The approaches differ in the treatment of degeneration effects: The first is based on an approximation of the discrete generalized Einstein relation implying a specifically modified thermal voltage, whereas the second scheme follows the conventionally used approach employing a modified electric field. We present a detailed analysis and comparison of both schemes, indicating a superior performance of the modified thermal voltage scheme. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9189 | |
dc.identifier.uri | https://doi.org/10.34657/8227 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2605 | |
dc.relation.hasversion | https://doi.org/10.1016/j.jcp.2019.109091 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Finite volume Scharfetter--Gummel method | eng |
dc.subject.other | semiconductor device simulation | eng |
dc.subject.other | electro-thermal transport | eng |
dc.subject.other | non-isothermal drift-diffusion system | eng |
dc.subject.other | degenerate semiconductors | eng |
dc.subject.other | Fermi--Dirac statistics | eng |
dc.subject.other | Seebeck coefficient | eng |
dc.title | Generalized Scharfetter--Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 27 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2605.pdf
- Size:
- 7.14 MB
- Format:
- Adobe Portable Document Format
- Description: