Predicting the dominating factors during heat transfer in magnetocaloric composite wires

dc.bibliographicCitation.firstPage108832eng
dc.bibliographicCitation.journalTitleMaterials and Designeng
dc.bibliographicCitation.lastPage9620eng
dc.bibliographicCitation.volume193eng
dc.contributor.authorKrautz, M.
dc.contributor.authorBeyer, L.
dc.contributor.authorFunk, A.
dc.contributor.authorWaske, A.
dc.contributor.authorWeise, B.
dc.contributor.authorFreudenberger, J.
dc.contributor.authorGottschall, T.
dc.date.accessioned2020-07-17T12:25:28Z
dc.date.available2020-07-17T12:25:28Z
dc.date.issued2020
dc.description.abstractMagnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3569
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4940
dc.language.isoengeng
dc.publisherAmsterdam : Elsevier B.V.eng
dc.relation.doihttps://doi.org/10.1016/j.matdes.2020.108832
dc.relation.issn0264-1275
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.ddc530eng
dc.subject.otherCompositeeng
dc.subject.otherHeat transfereng
dc.subject.otherNumerical simulationeng
dc.subject.otherPulsed magnetic fieldeng
dc.subject.otherHeat resistanceeng
dc.subject.otherHeat transfereng
dc.subject.otherNumerical modelseng
dc.subject.otherSpecific heateng
dc.subject.otherAdiabatic temperature changeeng
dc.subject.otherDominating factorseng
dc.subject.otherEffective temperatureeng
dc.subject.otherInterface resistanceeng
dc.subject.otherSinusoidal magnetic fieldseng
dc.subject.otherTemperature changeseng
dc.subject.otherThermal hysteresiseng
dc.subject.otherThermal transfereng
dc.subject.otherThermal conductivityeng
dc.titlePredicting the dominating factors during heat transfer in magnetocaloric composite wireseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Krautz et al 2020, Predicting the dominating factors during heat transfer in magnetocaloric composite wires.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:
Collections