Electrostatically PEGylated DNA enables salt-free hybridization in water

dc.bibliographicCitation.firstPage10097eng
dc.bibliographicCitation.issue43eng
dc.bibliographicCitation.journalTitleChemical Scienceeng
dc.bibliographicCitation.lastPage10105eng
dc.bibliographicCitation.volume10eng
dc.contributor.authorChakraborty, Gurudas
dc.contributor.authorBalinin, Konstantin
dc.contributor.authorPortale, Giuseppe
dc.contributor.authorLoznik, Mark
dc.contributor.authorPolushkin, Evgeny
dc.contributor.authorWeil, Tanja
dc.contributor.authorHerrmann, Andreas
dc.date.accessioned2022-03-29T13:04:55Z
dc.date.available2022-03-29T13:04:55Z
dc.date.issued2019
dc.description.abstractChemically modified nucleic acids have long served as a very important class of bio-hybrid structures. In particular, the modification with PEG has advanced the scope and performance of oligonucleotides in materials science, catalysis and therapeutics. Most of the applications involving pristine or modified DNA rely on the potential of DNA to form a double-stranded structure. However, a substantial requirement for metal-cations to achieve hybridization has restricted the range of applications. To extend the applicability of DNA in salt-free or low ionic strength aqueous medium, we introduce noncovalent DNA-PEG constructs that allow canonical base-pairing between individually PEGylated complementary strands resulting in a double-stranded structure in salt-free aqueous medium. This method relies on grafting of amino-terminated PEG polymers electrostatically onto the backbone of DNA, which results in the formation of a PEG-envelope. The specific charge interaction of PEG molecules with DNA, absolute absence of metal ions within the PEGylated DNA molecules and formation of a double helix that is significantly more stable than the duplex in an ionic buffer have been unequivocally demonstrated using multiple independent characterization techniques. This journal is © The Royal Society of Chemistry.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8451
dc.identifier.urihttps://doi.org/10.34657/7489
dc.language.isoengeng
dc.publisherCambridge : RSCeng
dc.relation.doihttps://doi.org/10.1039/c9sc02598g
dc.relation.essn2041-6539
dc.relation.issn2041-6520
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc540eng
dc.subject.otherIonic strengtheng
dc.subject.otherMetal ionseng
dc.subject.otherOligonucleotideseng
dc.subject.otherPolyethylene glycolseng
dc.subject.otherPolyethylene oxideseng
dc.subject.otherAmino-terminatedeng
dc.subject.otherAqueous mediumeng
dc.subject.otherCharacterization techniqueseng
dc.subject.otherCharge interactionseng
dc.subject.otherChemically modifiedeng
dc.subject.otherComplementary strandeng
dc.subject.otherDNA moleculeseng
dc.subject.otherLow ionic strengtheng
dc.subject.otherDNAeng
dc.titleElectrostatically PEGylated DNA enables salt-free hybridization in watereng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c9sc02598g.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Collections