First-order conditions for the optimal control of learning-informed nonsmooth PDEs

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2940
dc.contributor.authorDong, Guozhi
dc.contributor.authorHintermüller, Michael
dc.contributor.authorPapafitsoros, Kostas
dc.contributor.authorVölkner, Kathrin
dc.date.accessioned2022-07-08T13:04:40Z
dc.date.available2022-07-08T13:04:40Z
dc.date.issued2022
dc.description.abstractIn this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9698
dc.identifier.urihttps://doi.org/10.34657/8736
dc.language.isoeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2940
dc.relation.issn2198-5855
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.subject.otherNonsmooth partial differential equationseng
dc.subject.otherdata-driven modelseng
dc.subject.otherneural networkseng
dc.subject.otherReLU activation functioneng
dc.subject.otheroptimal controleng
dc.subject.otherPDE constrained optimizationeng
dc.titleFirst-order conditions for the optimal control of learning-informed nonsmooth PDEseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent29 S.
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wias_preprints_2940.pdf
Size:
425.24 KB
Format:
Adobe Portable Document Format
Description: