First-order conditions for the optimal control of learning-informed nonsmooth PDEs
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2940 | |
dc.contributor.author | Dong, Guozhi | |
dc.contributor.author | Hintermüller, Michael | |
dc.contributor.author | Papafitsoros, Kostas | |
dc.contributor.author | Völkner, Kathrin | |
dc.date.accessioned | 2022-07-08T13:04:40Z | |
dc.date.available | 2022-07-08T13:04:40Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9698 | |
dc.identifier.uri | https://doi.org/10.34657/8736 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2940 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Nonsmooth partial differential equations | eng |
dc.subject.other | data-driven models | eng |
dc.subject.other | neural networks | eng |
dc.subject.other | ReLU activation function | eng |
dc.subject.other | optimal control | eng |
dc.subject.other | PDE constrained optimization | eng |
dc.title | First-order conditions for the optimal control of learning-informed nonsmooth PDEs | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 29 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2940.pdf
- Size:
- 425.24 KB
- Format:
- Adobe Portable Document Format
- Description: