On the existence of SLE trace: finite energy drivers and non-constant κ

No Thumbnail Available
Date
2015
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

Existence of Loewner trace is revisited. We identify finite energy paths (the “skeleton of Wiener measure”) as natural class of regular drivers for which we find simple and natural estimates in terms of their (Cameron–Martin) norm. Secondly, now dealing with potentially rough drivers, a representation of the derivative of the (inverse of the) Loewner flow is given in terms of a rough- and then pathwise Föllmer integral. Assuming the driver within a class of Itˆo-processes, an exponential martingale argument implies existence of trace. In contrast to classical (exact) SLE computations, our arguments are well adapted to perturbations, such as non-constant (assuming < 2 for technical reasons) and additional finite-energy drift terms.

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.