On the existence of SLE trace: finite energy drivers and non-constant κ

dc.contributor.authorFriz, Peter K.
dc.contributor.authorShekhar, Atul
dc.date.accessioned2016-06-24T05:45:10Z
dc.date.available2019-06-28T08:03:43Z
dc.date.issued2015
dc.description.abstractExistence of Loewner trace is revisited. We identify finite energy paths (the “skeleton of Wiener measure”) as natural class of regular drivers for which we find simple and natural estimates in terms of their (Cameron–Martin) norm. Secondly, now dealing with potentially rough drivers, a representation of the derivative of the (inverse of the) Loewner flow is given in terms of a rough- and then pathwise Föllmer integral. Assuming the driver within a class of Itˆo-processes, an exponential martingale argument implies existence of trace. In contrast to classical (exact) SLE computations, our arguments are well adapted to perturbations, such as non-constant (assuming < 2 for technical reasons) and additional finite-energy drift terms.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2085
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1511.02670
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleOn the existence of SLE trace: finite energy drivers and non-constant κeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections