Radial Stark effect in (In,Ga)N nanowires

dc.bibliographicCitation.journalTitleNano Letterseng
dc.contributor.authorLähnemann, J.
dc.contributor.authorCorfdir, Pierre
dc.contributor.authorFeix, Felix
dc.contributor.authorKamimura, Jumpei
dc.contributor.authorFlissikowski, Timur
dc.contributor.authorGrahn, Holger T.
dc.contributor.authorGeelhaar, Lutz
dc.contributor.authorBrandt, Oliver
dc.date.accessioned2019-03-16T02:56:42Z
dc.date.available2019-06-28T07:29:58Z
dc.date.issued2017
dc.description.abstractWe study the luminescence of unintentionally doped and Si-doped InxGa1−xN nanowires with a low In content (x<0.2) grown by molecular beam epitaxy on Si substrates. The emission band observed at 300 K from the unintentionally doped samples is centered at much lower energies (800 meV) than expected from the In content measured by x-ray diffractometry and energy dispersive x-ray spectroscopy. This discrepancy arises from the pinning of the Fermi level at the sidewalls of the nanowires, which gives rise to strong radial built-in electric fields. The combination of the built-in electric fields with the compositional fluctuations inherent to (In,Ga)N alloys induces a competition between spatially direct and indirect recombination channels. At elevated temperatures, electrons at the core of the nanowire recombine with holes close to the surface, and the emission from unintentionally doped nanowires exhibits a Stark shift of several hundreds of meV. The competition between spatially direct and indirect transitions is analyzed as a function of temperature for samples with various Si concentrations. We propose that the radial Stark effect is responsible for the broadband absorption of (In,Ga)N nanowires across the entire visible range, which makes these nanostructures a promising platform for solar energy applications.
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1244
dc.language.isoengeng
dc.publisherWashington D.C. : American Chemical Society
dc.relation.doihttps://doi.org/10.1021/acs.nanolett.5b03748
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc620
dc.subject.other(Ineng
dc.subject.otherGa)Neng
dc.subject.othernanowireseng
dc.subject.otherluminescence spectroscopyeng
dc.subject.othercarrier localizationeng
dc.subject.otherFermi level pinningeng
dc.subject.otherStark effecteng
dc.titleRadial Stark effect in (In,Ga)N nanowires
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPDIeng
wgl.subjectIngenieurwissenschafteneng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files