Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters

dc.bibliographicCitation.firstPage2101844eng
dc.bibliographicCitation.issue39
dc.bibliographicCitation.journalTitleAdvanced materialseng
dc.bibliographicCitation.volume33eng
dc.contributor.authorLi, Yungui
dc.contributor.authorJiang, Lihui
dc.contributor.authorLiu, Wenlan
dc.contributor.authorXu, Shunqi
dc.contributor.authorLi, Tian-Yi
dc.contributor.authorFries, Felix
dc.contributor.authorZeika, Olaf
dc.contributor.authorZou, Yingping
dc.contributor.authorRamanan, Charusheela
dc.contributor.authorLenk, Simone
dc.contributor.authorScholz, Reinhard
dc.contributor.authorAndrienko, Denis
dc.contributor.authorFeng, Xinliang
dc.contributor.authorLeo, Karl
dc.contributor.authorReineke, Sebastian
dc.date.accessioned2021-12-06T08:11:11Z
dc.date.available2021-12-06T08:11:11Z
dc.date.issued2021
dc.description.abstractPersistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7639
dc.identifier.urihttps://doi.org/10.34657/6686
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adma.202101844
dc.relation.essn1521-4095
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject.ddc540eng
dc.subject.ddc660eng
dc.subject.othernon-radiative losseng
dc.subject.otherphenanthroimidazoleeng
dc.subject.otherroom-temperature phosphorescenceeng
dc.subject.othertriplet emissioneng
dc.titleReduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitterseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adma.202101844.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
Collections