Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles

dc.bibliographicCitation.firstPage6724eng
dc.bibliographicCitation.journalTitleACS Applied Materials & Interfaceseng
dc.bibliographicCitation.volume11eng
dc.contributor.authorPiché, Dominique
dc.contributor.authorTavernaro, Isabella
dc.contributor.authorFleddermann, Jana
dc.contributor.authorLozano, Juan G.
dc.contributor.authorVarambhia, Aakash
dc.contributor.authorMaguire, Mahon L.
dc.contributor.authorKoch, Marcus
dc.contributor.authorUkai, Tomofumi
dc.contributor.authorHernández Rodríguez, Armando J.
dc.contributor.authorJones, Lewys
dc.contributor.authorDillon, Frank
dc.contributor.authorReyes Molina, Israel
dc.contributor.authorMitzutani, Mai
dc.contributor.authorGonzález Dalmau, Evelio R.
dc.contributor.authorMaekawa, Toru
dc.contributor.authorNellist, Peter D.
dc.contributor.authorKraegeloh, Annette
dc.contributor.authorGrobert, Nicole
dc.date.accessioned2020-01-14T06:56:40Z
dc.date.available2020-01-14T06:56:40Z
dc.date.issued2019
dc.description.abstractExtraordinarily small (2.4 nm) cobalt ferrite nanoparticles (ESCIoNs) were synthesized by a one-pot thermal decomposition approach to study their potential as magnetic resonance imaging (MRI) contrast agents. Fine size control was achieved using oleylamine alone, and annular dark-field scanning transmission electron microscopy revealed highly crystalline cubic spinel particles with atomic resolution. Ligand exchange with dimercaptosuccinic acid rendered the particles stable in physiological conditions with a hydrodynamic diameter of 12 nm. The particles displayed superparamagnetic properties and a low r2/r1 ratio suitable for a T1 contrast agent. The particles were functionalized with bile acid, which improved biocompatibility by significant reduction of reactive oxygen species generation and is a first step toward liver-targeted T1 MRI. Our study demonstrates the potential of ESCIoNs as T1 MRI contrast agents.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/102
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4831
dc.language.isoengeng
dc.publisherWashington, DC : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acsami.8b17162
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.othercobalt ferrite nanoparticleseng
dc.subject.otherone-pot synthesiseng
dc.subject.othermagnetic resonance imagingeng
dc.subject.otherligand exchangeeng
dc.subject.othercytotoxicityeng
dc.subject.otherultrasmall nanoparticleseng
dc.subject.otherT1-weighted contrast agenteng
dc.subject.otherliver targetingeng
dc.titleTargeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticleseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Targeted T1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles.pdf
Size:
9.1 MB
Format:
Adobe Portable Document Format
Description: