Titanium Substitution Facilitating Oxygen and Manganese Redox in Sodium Layered Oxide Cathode

dc.bibliographicCitation.articleNumber2400190
dc.bibliographicCitation.firstPage2400190
dc.bibliographicCitation.issue22
dc.bibliographicCitation.journalTitleAdvanced Materials Interfaces
dc.bibliographicCitation.volume11
dc.contributor.authorZhou, Junhua
dc.contributor.authorHu, Huimin
dc.contributor.authorWang, Jiaqi
dc.contributor.authorShi, Qitao
dc.contributor.authorLian, Xueyu
dc.contributor.authorLiu, Lijun
dc.contributor.authorBachmatiuk, Alicja
dc.contributor.authorSun, Jingyu
dc.contributor.authorYang, Ruizhi
dc.contributor.authorChoi, Jin‐Ho
dc.contributor.authorRümmeli, Mark H.
dc.date.accessioned2024-10-15T08:49:17Z
dc.date.available2024-10-15T08:49:17Z
dc.date.issued2024
dc.description.abstractSodium layered oxide with anion redox activity (SLO-A) stands out as a promising cathode material for sodium-ion batteries due to its impressive capacity and high voltage resulting from Mn- and O-redox processes. However, the SLO-A faces significant challenges in cycling stability and rate performance, primarily due to the poor reversibility and sluggish kinetics of the O-redox. In this study,a novel Ti-doped material, Na2/3Li2/9Mn53/72Ti1/24O2 (NLMTO), exhibiting remarkable characteristics such as a notable rate capacity (130 mAh g−1 at 3C, where 1C equals 200 mA g−1) and excellent cycling retention (85.4% after 100 cycles at 0.5C) is introduced. Employing electrochemical differential analyses, the contributions to the superior performance arising from the Mn- and O-redox processes are quantitatively delineated. The optimized performance of NLMTO is attributed, in part, to the enhanced stability of both bulk and interface structures. The introduction of Ti through substitution not only contributes to this stability but also allows for the fine-tuning of the material's electron configurations. This is achieved by augmenting the density of states near the Fermi energy level, as well as elevating the O 2p and Mn 3d orbits. This research advances sodium-ion battery technology.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16795
dc.identifier.urihttps://doi.org/10.34657/15817
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/admi.202400190
dc.relation.essn2196-7350
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc540
dc.subject.ddc600
dc.subject.otheranion redoxeng
dc.subject.otherbulk structureeng
dc.subject.otherelectrochemical differential analysiseng
dc.subject.otherelectron configurationeng
dc.subject.othersodium layered oxideeng
dc.subject.otherTi substitutioneng
dc.titleTitanium Substitution Facilitating Oxygen and Manganese Redox in Sodium Layered Oxide Cathodeeng
dc.typeArticle
dc.typeText
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Titanium-Substitution-Facilitating-Oxygen.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
Description:
Collections