Projected particle methods for solving McKean-Vlasov equations
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We study a novel projection-based particle method to the solution of the corresponding McKean-Vlasov equation. Our approach is based on the projection-type estimation of the marginal density of the solution in each time step. The projection-based particle method can profit from additional smoothness of the underlying density and leads in many situation to a signficant reduction of numerical complexity compared to kernel density estimation algorithms. We derive strong convergence rates and rates of density estimation. The case of linearly growing coefficients of the McKean-Vlasov equation turns out to be rather challenging and requires some new type of averaging technique. This case is exemplified by explicit solutions to a class of McKean-Vlasov equations with affine drift.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.