Control of Positive and Negative Magnetoresistance in Iron Oxide : Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices

dc.bibliographicCitation.firstPage2543eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleACS applied electronic materialseng
dc.bibliographicCitation.lastPage2549eng
dc.bibliographicCitation.volume2eng
dc.contributor.authorNichterwitz, Martin
dc.contributor.authorHonnali, Shashank
dc.contributor.authorZehner, Jonas
dc.contributor.authorSchneider, Sebastian
dc.contributor.authorPohl, Darius
dc.contributor.authorSchiemenz, Sandra
dc.contributor.authorGoennenwein, Sebastian T.B.
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorLeistner, Karin
dc.date.accessioned2021-08-24T05:45:40Z
dc.date.available2021-08-24T05:45:40Z
dc.date.issued2020
dc.description.abstractThe perspective of energy-efficient and tunable functional magnetic nanostructures has triggered research efforts in the fields of voltage control of magnetism and spintronics. We investigate the magnetotransport properties of nanocomposite iron oxide/iron thin films with a nominal iron thickness of 5-50 nm and find a positive magnetoresistance at small thicknesses. The highest magnetoresistance was found for 30 nm Fe with +1.1% at 3 T. This anomalous behavior is attributed to the presence of Fe3O4-Fe nanocomposite regions due to grain boundary oxidation. At the Fe3O4/Fe interfaces, spin-polarized electrons in the magnetite can be scattered and reoriented. A crossover to negative magnetoresistance (-0.11%) is achieved at a larger thickness (>40 nm) when interface scattering effects become negligible as more current flows through the iron layer. Electrolytic gating of this system induces voltage-triggered redox reactions in the Fe3O4 regions and thereby enables voltage-tuning of the magnetoresistance with the locally oxidized regions as the active tuning elements. In the low-magnetic-field region (<1 T), a crossover from positive to negative magnetoresistance is achieved by a voltage change of only 1.72 V. At 3 T, a relative change of magnetoresistance about -45% during reduction was achieved for the 30 nm Fe sample. The present low-voltage approach signifies a step forward to practical and tunable room-temperature magnetoresistance-based nanodevices, which can boost the development of nanoscale and energy-efficient magnetic field sensors with high sensitivity, magnetic memories, and magnetoelectric devices in general. Copyright © 2020 American Chemical Society.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6574
dc.identifier.urihttps://doi.org/10.34657/5621
dc.language.isoengeng
dc.relation.doihttps://doi.org/10.1021/acsaelm.0c00448
dc.relation.essn2637-6113
dc.rights.licenseACS AuthorChoiceeng
dc.rights.urihttps://acsopenscience.org/open-access/licensing-options/eng
dc.subject.ddc540eng
dc.subject.ddc620eng
dc.subject.otheriron filmseng
dc.subject.othermagnetiteeng
dc.subject.othermagneto-ionic controleng
dc.subject.othermagnetoresistanceeng
dc.subject.othervoltage control of magnetismeng
dc.titleControl of Positive and Negative Magnetoresistance in Iron Oxide : Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodeviceseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Control of Positive and Negative Magnetoresistance in Iron Oxide–Iron Nanocomposite Thin Films for Tunable Magnetoelectric Nanodevices.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Description:
Collections