Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures

dc.bibliographicCitation.firstPage113004eng
dc.bibliographicCitation.journalTitleNew Journal of Physicseng
dc.bibliographicCitation.lastPage9679eng
dc.bibliographicCitation.volume10eng
dc.contributor.authorSchroetter, T.
dc.contributor.authorZaumseil, P.
dc.contributor.authorSeifarth, O.
dc.contributor.authorGiussani, A.
dc.contributor.authorMüssig, H.-J.
dc.contributor.authorStorck, P.
dc.contributor.authorGeiger, D.
dc.contributor.authorLichte, H.
dc.contributor.authorDabrowski, J.
dc.date.accessioned2020-08-12T05:34:52Z
dc.date.available2020-08-12T05:34:52Z
dc.date.issued2008
dc.description.abstractThe integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O 3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epiSi IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4128
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5499
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/10/11/113004
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc530eng
dc.subject.otherCorrosioneng
dc.subject.otherCrystal growtheng
dc.subject.otherCrystalline materialseng
dc.subject.otherCrystalseng
dc.subject.otherElectric conductivityeng
dc.subject.otherElectromagnetic waveseng
dc.subject.otherEpitaxial growtheng
dc.subject.otherEpitaxial layerseng
dc.subject.otherFlow interactionseng
dc.subject.otherIntegrated circuitseng
dc.subject.otherLighteng
dc.subject.otherSemiconducting siliconeng
dc.subject.otherSemiconducting silicon compoundseng
dc.subject.otherSemiconductor materialseng
dc.subject.otherSiliconeng
dc.subject.otherAb initio calculationseng
dc.subject.otherControlled propertieseng
dc.subject.otherDefect mechanismseng
dc.subject.otherDefect propertieseng
dc.subject.otherDielectric heterostructureeng
dc.subject.otherElectrostatic interactionseng
dc.subject.otherEpitaxial siliconseng
dc.subject.otherEpitaxy relationshipseng
dc.subject.otherFundamental physicseng
dc.subject.otherGrazing incidenceseng
dc.subject.otherHetero epitaxieseng
dc.subject.otherHeterostructureeng
dc.subject.otherHeterostructureseng
dc.subject.otherHigh defect densitieseng
dc.subject.otherOxide heterostructureseng
dc.subject.otherOxide systemseng
dc.subject.otherPromising approacheseng
dc.subject.otherSemi-conductorseng
dc.subject.otherSemiconductor layerseng
dc.subject.otherSI materialseng
dc.subject.otherSi(111)eng
dc.subject.otherSingle crystalline qualitieseng
dc.subject.otherSmall populationseng
dc.subject.otherStacking configurationseng
dc.subject.otherStacking sequenceseng
dc.subject.otherTwin formationseng
dc.subject.otherX-ray diffractionseng
dc.subject.otherHeterojunctionseng
dc.titleEngineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructureseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schroetter et al 2008, Engineering the semiconductor.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
Collections