Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures

dc.bibliographicCitation.firstPage113004eng
dc.bibliographicCitation.lastPage9679eng
dc.bibliographicCitation.volume10eng
dc.contributor.authorSchroetter, T.
dc.contributor.authorZaumseil, P.
dc.contributor.authorSeifarth, O.
dc.contributor.authorGiussani, A.
dc.contributor.authorMüssig, H.-J.
dc.contributor.authorStorck, P.
dc.contributor.authorGeiger, D.
dc.contributor.authorLichte, H.
dc.contributor.authorDabrowski, J.
dc.date.accessioned2020-08-12T05:34:52Z
dc.date.available2020-08-12T05:34:52Z
dc.date.issued2008
dc.description.abstractThe integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O 3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epiSi IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4128
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5499
dc.language.isoengeng
dc.publisherCollege Park, MD : Institute of Physics Publishingeng
dc.relation.doihttps://doi.org/10.1088/1367-2630/10/11/113004
dc.relation.ispartofseriesNew Journal of Physics 10 (2008)eng
dc.relation.issn1367-2630
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subjectCorrosioneng
dc.subjectCrystal growtheng
dc.subjectCrystalline materialseng
dc.subjectCrystalseng
dc.subjectElectric conductivityeng
dc.subjectElectromagnetic waveseng
dc.subjectEpitaxial growtheng
dc.subjectEpitaxial layerseng
dc.subjectFlow interactionseng
dc.subjectIntegrated circuitseng
dc.subjectLighteng
dc.subjectSemiconducting siliconeng
dc.subjectSemiconducting silicon compoundseng
dc.subjectSemiconductor materialseng
dc.subjectSiliconeng
dc.subjectAb initio calculationseng
dc.subjectControlled propertieseng
dc.subjectDefect mechanismseng
dc.subjectDefect propertieseng
dc.subjectDielectric heterostructureeng
dc.subjectElectrostatic interactionseng
dc.subjectEpitaxial siliconseng
dc.subjectEpitaxy relationshipseng
dc.subjectFundamental physicseng
dc.subjectGrazing incidenceseng
dc.subjectHetero epitaxieseng
dc.subjectHeterostructureeng
dc.subjectHeterostructureseng
dc.subjectHigh defect densitieseng
dc.subjectOxide heterostructureseng
dc.subjectOxide systemseng
dc.subjectPromising approacheseng
dc.subjectSemi-conductorseng
dc.subjectSemiconductor layerseng
dc.subjectSI materialseng
dc.subjectSi(111)eng
dc.subjectSingle crystalline qualitieseng
dc.subjectSmall populationseng
dc.subjectStacking configurationseng
dc.subjectStacking sequenceseng
dc.subjectTwin formationseng
dc.subjectX-ray diffractionseng
dc.subjectHeterojunctionseng
dc.subject.ddc530eng
dc.titleEngineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructureseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNew Journal of Physicseng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schroetter et al 2008, Engineering the semiconductor.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
Collections