Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect

dc.bibliographicCitation.firstPage248eng
dc.bibliographicCitation.journalTitleCarboneng
dc.bibliographicCitation.lastPage259eng
dc.bibliographicCitation.volume172eng
dc.contributor.authorArmakavicius, Nerijus
dc.contributor.authorKühne, Philipp
dc.contributor.authorEriksson, Jens
dc.contributor.authorBouhafs, Chamseddine
dc.contributor.authorStanishev, Vallery
dc.contributor.authorIvanov, Ivan G.
dc.contributor.authorYakimova, Rositsa
dc.contributor.authorZakharov, Alexei A.
dc.contributor.authorAl-Temimy, Ameer
dc.contributor.authorColetti, Camilla
dc.contributor.authorSchubert, Mathias
dc.contributor.authorDarakchieva, Vanya
dc.date.accessioned2022-03-23T14:45:36Z
dc.date.available2022-03-23T14:45:36Z
dc.date.issued2021
dc.description.abstractIn this work, we demonstrate the application of terahertz-optical Hall effect (THz-OHE) to determine directionally dependent free charge carrier properties of ambient-doped monolayer and quasi-free-standing-bilayer epitaxial graphene on 4H–SiC(0001). Directionally independent free hole mobility parameters are found for the monolayer graphene. In contrast, anisotropic hole mobility parameters with a lower mobility in direction perpendicular to the SiC surface steps and higher along the steps in quasi-free-standing-bilayer graphene are determined for the first time. A combination of THz-OHE, nanoscale microscopy and optical spectroscopy techniques are used to investigate the origin of the anisotropy. Different defect densities and different number of graphene layers on the step edges and terraces are ruled out as possible causes. Scattering mechanisms related to doping variations at the step edges and terraces as a result of different interaction with the substrate and environment are discussed and also excluded. It is suggested that the step edges introduce intrinsic scattering in quasi-free-standing-bilayer graphene, that is manifested as a result of the higher ratio between mean free path and average terrace width parameters. The suggested scenario allows to reconcile existing differences in the literature regarding the anisotropic electrical transport in epitaxial graphene. © 2020 Elsevier Ltdeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8340
dc.identifier.urihttps://doi.org/10.34657/7378
dc.language.isoengeng
dc.publisherAmsterdam [u.a.] : Elsevier Scienceeng
dc.relation.doihttps://doi.org/10.1016/j.carbon.2020.09.035
dc.relation.essn0008-6223
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc540eng
dc.subject.otherAnisotropic mobilityeng
dc.subject.otherAnisotropic transporteng
dc.subject.otherFree charge carrierseng
dc.subject.otherGrapheneeng
dc.subject.otherHydrogen intercalationeng
dc.subject.otherScattering mechanismseng
dc.subject.otherTerahertz optical Hall effecteng
dc.titleResolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effecteng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0008622320308897-main.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format
Description:
Collections