An adaptive stochastic Galerkin tensor train discretization for randomly perturbed domains
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2566 | |
dc.contributor.author | Eigel, Martin | |
dc.contributor.author | Marschall, Manuel | |
dc.contributor.author | Multerer, Michael | |
dc.date.accessioned | 2019-03-09T03:38:23Z | |
dc.date.available | 2019-06-28T08:10:27Z | |
dc.date.issued | 2018 | |
dc.description.abstract | A linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin framework. The perturbation of the domains boundary is described by a vector valued random field depending on a countable number of random variables in an affine way. The corresponding Karhunen-Loève expansion is approximated by the pivoted Cholesky decomposition based on a prescribed covariance function. The examined high-dimensional Galerkin system follows from the domain mapping approach, transferring the randomness from the domain to the diffusion coefficient and the forcing. In order to make this computationally feasible, the representation makes use of the modern tensor train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is presented, which allows for the problem-dependent iterative refinement of all discretization parameters and the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical benchmark problems. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 2198-5855 | |
dc.identifier.uri | https://doi.org/10.34657/1941 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2736 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2566 | |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Partial differential equations with random coefficients | eng |
dc.subject.other | tensor representation | eng |
dc.subject.other | tensor train | eng |
dc.subject.other | uncertainty quantification | eng |
dc.subject.other | stochastic finite element methods | eng |
dc.subject.other | log-normal | eng |
dc.subject.other | adaptive methods | eng |
dc.subject.other | ALS | eng |
dc.subject.other | low-rank | eng |
dc.subject.other | reduced basis methods. | eng |
dc.title | An adaptive stochastic Galerkin tensor train discretization for randomly perturbed domains | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1