An adaptive stochastic Galerkin tensor train discretization for randomly perturbed domains

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2566
dc.contributor.authorEigel, Martin
dc.contributor.authorMarschall, Manuel
dc.contributor.authorMulterer, Michael
dc.date.accessioned2019-03-09T03:38:23Z
dc.date.available2019-06-28T08:10:27Z
dc.date.issued2018
dc.description.abstractA linear PDE problem for randomly perturbed domains is considered in an adaptive Galerkin framework. The perturbation of the domains boundary is described by a vector valued random field depending on a countable number of random variables in an affine way. The corresponding Karhunen-Loève expansion is approximated by the pivoted Cholesky decomposition based on a prescribed covariance function. The examined high-dimensional Galerkin system follows from the domain mapping approach, transferring the randomness from the domain to the diffusion coefficient and the forcing. In order to make this computationally feasible, the representation makes use of the modern tensor train format for the implicit compression of the problem. Moreover, an a posteriori error estimator is presented, which allows for the problem-dependent iterative refinement of all discretization parameters and the assessment of the achieved error reduction. The proposed approach is demonstrated in numerical benchmark problems.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/1941
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2736
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.doihttps://doi.org/10.20347/WIAS.PREPRINT.2566
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherPartial differential equations with random coefficientseng
dc.subject.othertensor representationeng
dc.subject.othertensor traineng
dc.subject.otheruncertainty quantificationeng
dc.subject.otherstochastic finite element methodseng
dc.subject.otherlog-normaleng
dc.subject.otheradaptive methodseng
dc.subject.otherALSeng
dc.subject.otherlow-rankeng
dc.subject.otherreduced basis methods.eng
dc.titleAn adaptive stochastic Galerkin tensor train discretization for randomly perturbed domainseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1067406727.pdf
Size:
5.2 MB
Format:
Adobe Portable Document Format
Description: