The value of remote marine aerosol measurements for constraining radiative forcing uncertainty

dc.bibliographicCitation.firstPage10063eng
dc.bibliographicCitation.issue16eng
dc.bibliographicCitation.lastPage10072eng
dc.bibliographicCitation.volume20eng
dc.contributor.authorRegayre, Leighton A.
dc.contributor.authorSchmale, Julia
dc.contributor.authorJohnson, Jill S.
dc.contributor.authorTatzelt, Christian
dc.contributor.authorBaccarini, Andrea
dc.contributor.authorHenning, Silvia
dc.contributor.authorYoshioka, Masaru
dc.contributor.authorStratmann, Frank
dc.contributor.authorGysel-Beer, Martin
dc.contributor.authorGrosvenor, Daniel P.
dc.contributor.authorCarslaw, Ken S.
dc.date.accessioned2021-10-13T05:39:13Z
dc.date.available2021-10-13T05:39:13Z
dc.date.issued2020
dc.description.abstractAerosol measurements over the Southern Ocean are used to constrain aerosol-cloud interaction radiative forcing (RFaci) uncertainty in a global climate model. Forcing uncertainty is quantified using 1 million climate model variants that sample the uncertainty in nearly 30 model parameters. Measurements of cloud condensation nuclei and other aerosol properties from an Antarctic circumnavigation expedition strongly constrain natural aerosol emissions: default sea spray emissions need to be increased by around a factor of 3 to be consistent with measurements. Forcing uncertainty is reduced by around 7% using this set of several hundred measurements, which is comparable to the 8% reduction achieved using a diverse and extensive set of over 9000 predominantly Northern Hemisphere measurements. When Southern Ocean and Northern Hemisphere measurements are combined, uncertainty in RFaci is reduced by 21 %, and the strongest 20% of forcing values are ruled out as implausible. In this combined constraint, observationally plausible RFaci is around 0.17Wm-2 weaker (less negative) with 95% credible values ranging from-2:51 to-1:17Wm-2 (standard deviation of-2:18 to-1:46Wm-2). The Southern Ocean and Northern Hemisphere measurement datasets are complementary because they constrain different processes. These results highlight the value of remote marine aerosol measurements. © 2020 Laser Institute of America. All rights reserved.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6972
dc.identifier.urihttps://doi.org/10.34657/6019
dc.language.isoengeng
dc.publisherKatlenburg-Lindau : EGUeng
dc.relation.doihttps://doi.org/10.5194/acp-20-10063-2020
dc.relation.essn1680-7324
dc.relation.ispartofseriesAtmospheric chemistry and physics 20 (2020), Nr. 16eng
dc.relation.issn1680-7316
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectaerosoleng
dc.subjectclimate modelingeng
dc.subjectcloud condensation nucleuseng
dc.subjectcloud radiative forcingeng
dc.subjectglobal climateeng
dc.subjectNorthern Hemisphereeng
dc.subjectuncertainty analysiseng
dc.subjectSouthern Oceaneng
dc.subject.ddc550eng
dc.titleThe value of remote marine aerosol measurements for constraining radiative forcing uncertaintyeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAtmospheric chemistry and physicseng
tib.accessRightsopenAccesseng
wgl.contributorTROPOSeng
wgl.subjectGeowissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The value of remote marine aerosol measurements for constraining radiative forcing uncertainty.pdf
Size:
843.11 KB
Format:
Adobe Portable Document Format
Description: