Density-Dependence of Surface Transport in Tellurium-Enriched Nanograined Bulk Bi2Te3

dc.bibliographicCitation.articleNumber2204850
dc.bibliographicCitation.firstPage2204850
dc.bibliographicCitation.issue11
dc.bibliographicCitation.journalTitleSmall : nano microeng
dc.bibliographicCitation.volume19
dc.contributor.authorIzadi, Sepideh
dc.contributor.authorBhattacharya, Ahana
dc.contributor.authorSalloum, Sarah
dc.contributor.authorHan, Jeong Woo
dc.contributor.authorSchnatmann, Lauritz
dc.contributor.authorWolff, Ulrike
dc.contributor.authorPerez, Nicolas
dc.contributor.authorBendt, Georg
dc.contributor.authorEnnen, Inga
dc.contributor.authorHütten, Andreas
dc.contributor.authorNielsch, Kornelius
dc.contributor.authorSchulz, Stephan
dc.contributor.authorMittendorff, Martin
dc.contributor.authorSchierning, Gabi
dc.date.accessioned2023-02-10T07:33:39Z
dc.date.available2023-02-10T07:33:39Z
dc.date.issued2023
dc.description.abstractThree-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11382
dc.identifier.urihttp://dx.doi.org/10.34657/10416
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/smll.202204850
dc.relation.essn1613-6829
dc.relation.issn1613-6810
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.ddc570
dc.subject.ddc620
dc.subject.other3D topological insulatorseng
dc.subject.otherBi Te nanoparticles 2 3eng
dc.subject.othermagnetotransporteng
dc.subject.othersurfactanteng
dc.subject.otherTHz spectroscopyeng
dc.titleDensity-Dependence of Surface Transport in Tellurium-Enriched Nanograined Bulk Bi2Te3eng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIFWD
wgl.subjectIngenieurwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Density-Dependence_of_Surface_Transport.pdf
Size:
5.23 MB
Format:
Adobe Portable Document Format
Description: