Multistability of twisted states in non-locally coupled Kuramoto-type models

Loading...
Thumbnail Image
Date
2012
Volume
1685
Issue
Journal
Series Titel
WIAS Preprints
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

A ring of N identical phase oscillators with interactions between L-nearest neighbors is considered, where L ranges from 1 (local coupling) to N/2 (global coupling). The coupling function is a simple sinusoid, as in the Kuramoto model, but with a minus sign which has a profound influence on its behavior. Without limitation of the generality the frequency of the free-running oscillators can be set to zero. The resulting system is of gradient type and therefore all its solutions converge to an equilibrium point. All so-called q-twisted states, where the phase difference between neighboring oscillators on the ring is 2 pi q/N are equilibrium points, where q is an integer. Their stability in the limit N -> inf. is discussed along the line of1. In addition we prove that when a twisted state is asymptotically stable for the infinite system, it is also asymptotically stable for sufficiently large N. Note that for smaller N, the same q-twisted states may become unstable and other q-twisted states may become stable. Finally, the existence of additional equilibrium states, called here multi-twisted states, is shown by numerical simulation. The phase difference between neighboring oscillators is approximately 2 pi q/N in one sector of the ring, -2 pi q/N in another sector, and it has intermediate values between the two sectors. Our numerical investigation suggests that the number of different stable multi-twisted states grows exponentially as N -> inf. It is possible to interpret the equilibrium points of the coupled phase oscillator network as trajectories of a discrete-time translational dynamical system where the space-variable (position on the ring) plays the role of time. The q-twisted states are then fixed points and the multi-twisted states are periodic solutions of period N that are close to a heteroclinic cycle. Due to the apparently exponentially fast growing number of such stable periodic solutions, the system shows spatial chaos as N -> 1.

Description
Keywords
Citation
Girnyk, T., Hasler, M., & Maistrenko, Y. (2012). Multistability of twisted states in non-locally coupled Kuramoto-type models. Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.