Hydrogel-Based Flexible Energy Storage Using Electrodes Based on Polypyrrole and Carbon Threads

dc.bibliographicCitation.articleNumber2300373
dc.bibliographicCitation.firstPage2300373
dc.bibliographicCitation.issue27
dc.bibliographicCitation.volume10
dc.contributor.authorRuthes, Jean G. A.
dc.contributor.authorDeller, Andrei E.
dc.contributor.authorPameté, Emmanuel
dc.contributor.authorRiegel‐Vidotti, Izabel C.
dc.contributor.authorPresser, Volker
dc.contributor.authorVidotti, Marcio
dc.date.accessioned2024-07-02T07:17:03Z
dc.date.available2024-07-02T07:17:03Z
dc.date.issued2023
dc.description.abstractDeveloping new flexible and electroactive materials is a significant challenge to producing safe, reliable, and environmentally friendly energy storage devices. This study introduces a promising electrolyte system that fulfills these requirements. First, polypyrrole (PPy) nanotubes are electropolymerized in graphite-thread electrodes using methyl orange (MO) templates in an acidic medium. The modification increases the conductivity and does not compromise the flexibility of the electrodes. Next, flexible supercapacitors are built using hydrogel prepared from poly(vinyl alcohol) (PVA)/sodium alginate (SA) obtained by freeze–thawing and swollen with ionic solutions as an electrolyte. The material exhibits a homogenous and porous hydrogel matrix allowing a high conductivity of 3.6 mS cm−1 as-prepared while displaying great versatility, changing its electrochemical and mechanical properties depending on the swollen electrolyte. Therefore, it allows its combination with modified graphite-thread electrodes into a quasi-solid electrochemical energy storage device, achieving a specific capacitance (Cs) value of 66 F g−1 at 0.5 A g−1. Finally, the flexible device exhibits specific energy and power values of 19.9 W kg−1 and 3.0 Wh kg−1, relying on the liquid phase in the hydrogel matrix produced from biodegradable polymers. This study shows an environment friendly, flexible, and tunable quasi-solid electrolyte, depending on a simple swell experiment to shape its properties according to its application.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/14757
dc.identifier.urihttps://doi.org/10.34657/13779
dc.language.isoeng
dc.publisherWeinheim : Wiley-VCH
dc.relation.doihttps://doi.org/10.1002/admi.202300373
dc.relation.essn2196-7350
dc.relation.ispartofseriesAdvanced Materials Interfaces 10 (2023), Nr. 27
dc.relation.issn2196-7350
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectelectrolyteeng
dc.subjectflexible energy storageeng
dc.subjecthydrogeleng
dc.subjectmodified electrodeeng
dc.subject.ddc540
dc.subject.ddc600
dc.titleHydrogel-Based Flexible Energy Storage Using Electrodes Based on Polypyrrole and Carbon Threadseng
dc.typeArticle
dc.typeText
dcterms.bibliographicCitation.journalTitleAdvanced Materials Interfaces
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectChemieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hydrogel‐Based-Flexible-Energy-Storage.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format
Description:
Collections