This item is non-discoverable
Representing Semantified Biological Assays in the Open Research Knowledge Graph
dc.bibliographicCitation.bookTitle | Digital Libraries at Times of Massive Societal Transition | eng |
dc.bibliographicCitation.firstPage | 89 | eng |
dc.bibliographicCitation.journalTitle | Lecture Notes in Computer Science | eng |
dc.bibliographicCitation.lastPage | 98 | eng |
dc.bibliographicCitation.volume | 12504 | eng |
dc.contributor.author | Anteghini, Marco | |
dc.contributor.author | D’Souza, Jennifer | |
dc.contributor.author | Martins dos Santos, Vitor A.P. | |
dc.contributor.author | Auer, Sören | |
dc.contributor.editor | Ishita, Emi | |
dc.contributor.editor | Pang, Natalie Lee San | |
dc.contributor.editor | Zhou, Lihong | |
dc.date.accessioned | 2022-08-10T11:25:24Z | |
dc.date.available | 2022-08-10T11:25:24Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles. | eng |
dc.description.version | submittedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9963 | |
dc.identifier.uri | http://dx.doi.org/10.34657/9001 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin ; Heidelberg : Springer | eng |
dc.relation.doi | https://doi.org/10.1007/978-3-030-64452-9_8 | |
dc.relation.essn | 1611-3349 | |
dc.relation.isbn | 978-3-030-64451-2 | |
dc.relation.isbn | 978-3-030-64452-9 | |
dc.relation.issn | 0302-9743 | |
dc.rights.license | Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | eng |
dc.subject.ddc | 004 | eng |
dc.subject.gnd | Konferenzschrift | ger |
dc.subject.other | Bioassays | eng |
dc.subject.other | Open Research Knowledge Graph | eng |
dc.subject.other | Open science graphs | eng |
dc.title | Representing Semantified Biological Assays in the Open Research Knowledge Graph | eng |
dc.type | BookPart | eng |
dc.type | Text | eng |
dcterms.event | 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, November 30 – December 1, Kyoto, Japan | |
tib.accessRights | openAccess | eng |
wgl.contributor | TIB | eng |
wgl.subject | Informatik | eng |
wgl.type | Buchkapitel / Sammelwerksbeitrag | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Anteghini2020, Preprint.pdf
- Size:
- 473.05 KB
- Format:
- Adobe Portable Document Format
- Description: