Global existence for a strongly coupled Cahn-Hilliard system with viscosity : in memory of Enrico Magenes

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume1691
dc.contributor.authorColli, Pierluigi
dc.contributor.authorGilardi, Gianni
dc.contributor.authorPodio-Guidugli, Paolo
dc.contributor.authorSprekels, Jürgen
dc.contributor.authorMagenes, Enrico
dc.date.accessioned2016-03-24T17:38:07Z
dc.date.available2019-06-28T08:02:16Z
dc.date.issued2012
dc.description.abstractAn existence result is proved for a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by Neumann homogeneous boundary conditions and initial conditions. This system is meant to model two-species phase segregation on an atomic lattice under the presence of diffusion. A similar system has been recently introduced and analyzed in [CGPS11]. Both systems conform to the general theory developed in [Pod06]: two parabolic PDEs, interpreted as balances of microforces and microenergy, are to be solved for the order parameter $rho$ and the chemical potential $mu$. In the system studied in this note, a phase-field equation in $rho$ fairly more general than in [CGPS11] is coupled with a highly nonlinear diffusion equation for $mu$, in which the conductivity coefficient is allowed to depend nonlinearly on both variables.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn0946-8633
dc.identifier.urihttps://doi.org/10.34657/2451
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/1783
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn0946-8633eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherViscous Cahn–Hilliard systemeng
dc.subject.otherphase field modeleng
dc.subject.othernonlinear conductivityeng
dc.subject.otherexistence of solutionseng
dc.titleGlobal existence for a strongly coupled Cahn-Hilliard system with viscosity : in memory of Enrico Mageneseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
721237495.pdf
Size:
181 KB
Format:
Adobe Portable Document Format
Description: