Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics

dc.bibliographicCitation.firstPage1773eng
dc.bibliographicCitation.journalTitleScientific Reportseng
dc.bibliographicCitation.lastPage516eng
dc.bibliographicCitation.volume9eng
dc.contributor.authorSerkov, A.A.
dc.contributor.authorSnelling, H.V.
dc.contributor.authorHeusing, S.
dc.contributor.authorAmaral, T.M.
dc.date.accessioned2020-01-14T06:56:41Z
dc.date.available2020-01-14T06:56:41Z
dc.date.issued2019
dc.description.abstractTin doped indium oxide (ITO) thin films provide excellent transparency and conductivity for electrodes in displays and photovoltaic systems. Current advances in producing printable ITO inks are reducing the volume of wasted indium during thin film patterning. However, their applicability to flexible electronics is hindered by the need for high temperature processing that results in damage to conventional polymer substrates. Here, we detail the conditions under which laser heating can be used as a replacement for oven and furnace treatments. Measurements of the optical properties of both the printed ITO film and the polymer substrate (polyethylene terephthalate, PET) identify that in the 1.5–2.0 μm wavelength band there is absorption in the ITO film but good transparency in PET. Hence, laser light that is not absorbed in the film does not go on to add a deleterious energy loading to the substrate. Localization of the energy deposition in the film is further enhanced by using ultrashort laser pulses (~1 ps) thus limiting heat flow during the interaction. Under these conditions, laser processing of the printed ITO films results in an improvement of the conductivity without damage to the PET. © 2019, The Author(s).eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/111
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4840
dc.language.isoengeng
dc.publisherBerlin : Springer Natureeng
dc.relation.doihttps://doi.org/10.1038/s41598-018-38043-y
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.otherTin doped indium oxideeng
dc.subject.otherITOeng
dc.subject.otherthin filmseng
dc.titleLaser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronicseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description: