Automatic Actin Filament Quantification and Cell Shape Modeling of Osteoblasts on Charged Ti Surfaces

dc.bibliographicCitation.firstPage5689
dc.bibliographicCitation.issue12
dc.bibliographicCitation.volume11
dc.contributor.authorGruening, Martina
dc.contributor.authorDawson, Jonathan E.
dc.contributor.authorVoelkner, Christian
dc.contributor.authorNeuber, Sven
dc.contributor.authorFricke, Katja
dc.contributor.authorvan Rienen, Ursula
dc.contributor.authorSpeller, Sylvia
dc.contributor.authorHelm, Christiane A.
dc.contributor.authorNebe, J. Barbara
dc.date.accessioned2023-01-24T10:35:10Z
dc.date.available2023-01-24T10:35:10Z
dc.date.issued2021
dc.description.abstractSurface charges at the cell–biomaterial interface are known to determine cellular functions. Previous findings on cell signaling indicate that osteoblastic cells favor certain moderately positive surface charges, whereas highly positive charges are not tolerated. In this study, we aimed to gain deeper insights into the influence exerted by surface charges on the actin cytoskeleton and the cell shape. We analyzed surfaces with a negative, moderately positive, and highly positive zeta (ζ) potential: titanium (Ti), Ti with plasma polymerized allylamine (PPAAm), and Ti with a polydiallyldimethylammonium chloride (PDADMA) multilayer, respectively. We used the software FilaQuant for automatic actin filament quantification of osteoblastic MG-63s, analyzed the cell edge height with scanning ion conductance microscopy (SICM), and described the cellular shape via a mathematical vertex model. A significant enhancement of actin filament formation was achieved on moderately positive (+7 mV) compared with negative ζ-potentials (−87 mV). A hampered cell spreading was reflected in a diminished actin filament number and length on highly positively charged surfaces (+50 mV). Mathematical simulations suggested that in these cells, cortical tension forces dominate the cell–substrate adhesion forces. Our findings present new insights into the impact of surface charges on the overall cell shape and even intracellular structures.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11008
dc.identifier.urihttp://dx.doi.org/10.34657/10034
dc.language.isoeng
dc.publisherBasel : MDPI
dc.relation.doihttps://doi.org/10.3390/app11125689
dc.relation.essn2076-3417
dc.relation.ispartofseriesApplied Sciences 11 (2021), Nr. 12eng
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectActin cytoskeletoneng
dc.subjectActin quantificationeng
dc.subjectCell spreadingeng
dc.subjectCell-material interac-tioneng
dc.subjectMathematical modelingeng
dc.subjectOsteoblastseng
dc.subjectScanning ion conductance microscopyeng
dc.subjectSurface charge sensingeng
dc.subject.ddc600
dc.titleAutomatic Actin Filament Quantification and Cell Shape Modeling of Osteoblasts on Charged Ti Surfaceseng
dc.typearticle
dc.typeText
dcterms.bibliographicCitation.journalTitleApplied Sciences
tib.accessRightsopenAccess
wgl.contributorINP
wgl.subjectPhysikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-11-05689-v2.pdf
Size:
3.63 MB
Format:
Adobe Portable Document Format
Description:
Collections