Parabolic Anderson model with a finite number of moving catalysts
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We consider the parabolic Anderson model (PAM) which is given by the equation partial u/partial t = kappaDelta u + xi u with ucolon, Z^dtimes [0,infty)to R, where kappa in [0,infty) is the diffusion constant, Delta is the discrete Laplacian, and xicolon,Z^dtimes [0,infty)toR is a space-time random environment. The solution of this equation describes the evolution of the density u of a reactant'' u under the influence of a
catalyst'' xi.newlineindent In the present paper we focus on the case where xi is a system of n independent simple random walks each with step rate 2drho and starting from the origin. We study the emphannealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of u w.r.t. xi and show that these exponents, as a function of the diffusion constant kappa and the rate constant rho, behave differently depending on the dimension d. In particular, we give a description of the intermittent behavior of the system in terms of the annealed Lyapunov exponents,...
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.