A large-deviations principle for all the components in a sparse inhomogeneous random graph
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 2898 | |
dc.contributor.author | Andreis, Luisa | |
dc.contributor.author | König, Wolfgang | |
dc.contributor.author | Langhammer, Heide | |
dc.contributor.author | Patterson, Robert I. A. | |
dc.date.accessioned | 2022-07-05T14:37:18Z | |
dc.date.available | 2022-07-05T14:37:18Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We study an inhomogeneous sparse random graph, GN, on [N] = { 1,...,N } as introduced in a seminal paper [BJR07] by Bollobás, Janson and Riordan (2007): vertices have a type (here in a compact metric space S), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N → ∞ , we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≈ N). In doing so, we derive explicit logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN. In particular, we recover the criterion for the existence of the phase transition given in [BJR07]. | eng |
dc.description.version | publishedVersion | eng |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/9616 | |
dc.identifier.uri | https://doi.org/10.34657/8654 | |
dc.language.iso | eng | |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | |
dc.relation.doi | https://doi.org/10.20347/WIAS.PREPRINT.2898 | |
dc.relation.issn | 2198-5855 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | |
dc.subject.other | Sparse random graph | eng |
dc.subject.other | empirical measures of components | eng |
dc.subject.other | large deviations | eng |
dc.subject.other | projective limits | eng |
dc.subject.other | giant cluster phase transition | eng |
dc.subject.other | asymptotics for connection probabilities | eng |
dc.subject.other | spatial coagulation model | eng |
dc.subject.other | Flory equation | eng |
dc.subject.other | stochastic block model | eng |
dc.title | A large-deviations principle for all the components in a sparse inhomogeneous random graph | eng |
dc.type | Report | eng |
dc.type | Text | eng |
dcterms.extent | 77 S. | |
tib.accessRights | openAccess | |
wgl.contributor | WIAS | |
wgl.subject | Mathematik | |
wgl.type | Report / Forschungsbericht / Arbeitspapier |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- wias_preprints_2898.pdf
- Size:
- 726.33 KB
- Format:
- Adobe Portable Document Format
- Description: