Transient magnetic gratings on the nanometer scale

dc.bibliographicCitation.firstPage054501eng
dc.bibliographicCitation.issue5eng
dc.bibliographicCitation.journalTitleStructural dynamicseng
dc.bibliographicCitation.volume7eng
dc.contributor.authorWeder, D.
dc.contributor.authorvon Korff Schmising, C.
dc.contributor.authorGünther, C.M.
dc.contributor.authorSchneider, M.
dc.contributor.authorEngel, D.
dc.contributor.authorHessing, P.
dc.contributor.authorStrüber, C.
dc.contributor.authorWeigand, M.
dc.contributor.authorVodungbo, B.
dc.contributor.authorJal, E.
dc.contributor.authorLiu, X.
dc.contributor.authorMerhe, A.
dc.contributor.authorPedersoli, E.
dc.contributor.authorCapotondi, F.
dc.contributor.authorLüning, J.
dc.contributor.authorPfau, B.
dc.contributor.authorEisebitt, S.
dc.date.accessioned2022-08-15T06:28:37Z
dc.date.available2022-08-15T06:28:37Z
dc.date.issued2020
dc.description.abstractLaser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10016
dc.identifier.urihttp://dx.doi.org/10.34657/9054
dc.language.isoengeng
dc.publisherMelville, NY : AIP Publishing LLCeng
dc.relation.doihttps://doi.org/10.1063/4.0000017
dc.relation.essn2329-7778
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530eng
dc.subject.ddc500eng
dc.subject.otherDichroismeng
dc.subject.otherDiffraction gratingseng
dc.subject.otherElectron transport propertieseng
dc.subject.otherFree electron laserseng
dc.subject.otherLaser excitationeng
dc.titleTransient magnetic gratings on the nanometer scaleeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMBIeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transient_magnetic_gratings.pdf
Size:
3.74 MB
Format:
Adobe Portable Document Format
Description:
Collections