Modulating the luminance of organic light-emitting diodes: Via optical stimulation of a photochromic molecular monolayer at transparent oxide electrode

dc.bibliographicCitation.firstPage5444eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.journalTitleNanoscaleeng
dc.bibliographicCitation.lastPage5451eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorLigorio, Giovanni
dc.contributor.authorCotella, Giovanni F.
dc.contributor.authorBonasera, Aurelio
dc.contributor.authorZorn Morales, Nicolas
dc.contributor.authorCarnicella, Giuseppe
dc.contributor.authorKobin, Björn
dc.contributor.authorWang, Qiankun
dc.contributor.authorKoch, Norbert
dc.contributor.authorHecht, Stefan
dc.contributor.authorList-Kratochvil, Emil J.W.
dc.contributor.authorCacialli, Franco
dc.date.accessioned2021-08-03T08:50:36Z
dc.date.available2021-08-03T08:50:36Z
dc.date.issued2020
dc.description.abstractSelf-assembled monolayers (SAMs) deposited on bottom electrodes are commonly used to tune charge carrier injection or blocking in optoelectronic devices. Beside the enhancement of device performance, the fabrication of multifunctional devices in which the output can be modulated by multiple external stimuli remains a challenging target. In this work, we report the functionalization of an indium tin oxide (ITO) electrode with a SAM of a diarylethene derivative designed for optically control the electronic properties. Following the demonstration of dense SAM formation and its photochromic activity, as a proof-of-principle, an organic light-emitting diode (OLED) embedding the light-responsive SAM-covered electrode was fabricated and characterized. Optically addressing the two-terminal device by irradiation with ultraviolet light doubles the electroluminescence. The original value can be restored reversibly by irradiation with visible light. This expanded functionality is based on the photoinduced modulation of the electronic structure of the diarylethene isomers, which impact the charge carriers' confinement within the emissive layer. This approach could be successfully exploited in the field of opto-communication technology, for example to fabricate opto-electronic logic circuits. © 2020 The Royal Society of Chemistry.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6470
dc.identifier.urihttps://doi.org/10.34657/5517
dc.language.isoengeng
dc.publisherCambridge : RSC Publ.eng
dc.relation.doihttps://doi.org/10.1039/d0nr00724b
dc.relation.essn2040-3372
dc.relation.issn2040-3364
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc600eng
dc.subject.otherComputer circuitseng
dc.subject.otherElectronic structureeng
dc.subject.otherIrradiationeng
dc.subject.otherIsomerseng
dc.subject.otherMonolayerseng
dc.subject.otherOptical signal processingeng
dc.subject.otherOptoelectronic deviceseng
dc.subject.otherPhotochromismeng
dc.subject.otherTin oxideseng
dc.subject.otherTransparent electrodeseng
dc.subject.otherCharge carrier injectioneng
dc.subject.otherCommunication technologieseng
dc.subject.otherDiarylethene derivativeseng
dc.subject.otherIndium tin oxide electrodeseng
dc.subject.otherMolecular monolayereng
dc.subject.otherMultifunctional deviceseng
dc.subject.otherOptical stimulationeng
dc.subject.otherOrganic light emitting diodes (OLED)eng
dc.titleModulating the luminance of organic light-emitting diodes: Via optical stimulation of a photochromic molecular monolayer at transparent oxide electrodeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorDWIeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d0nr00724b.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description: