Finding recurrence networks' threshold adaptively for a specific time series

dc.bibliographicCitation.firstPage1085eng
dc.bibliographicCitation.issue6eng
dc.bibliographicCitation.journalTitleNonlinear Processes in Geophysicseng
dc.bibliographicCitation.volume21eng
dc.contributor.authorEroglu, D.
dc.contributor.authorMarwan, N.
dc.contributor.authorPrasad, S.
dc.contributor.authorKurths, J.
dc.date.accessioned2020-08-01T15:36:08Z
dc.date.available2020-08-01T15:36:08Z
dc.date.issued2014
dc.description.abstractRecurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches-recurrence plots and recurrence networks-, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period-chaos and even period-period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3894
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5265
dc.language.isoengeng
dc.publisherGöttingen : Copernicus GmbHeng
dc.relation.doihttps://doi.org/10.5194/npg-21-1085-2014
dc.relation.issn1023-5809
dc.rights.licenseCC BY 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/eng
dc.subject.ddc530eng
dc.subject.otherclimate changeeng
dc.subject.otherlacustrine depositeng
dc.subject.othermodelingeng
dc.subject.othertime serieseng
dc.titleFinding recurrence networks' threshold adaptively for a specific time serieseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIKeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Eroglu et al 2014, Finding recurrence networks.pdf
Size:
938.74 KB
Format:
Adobe Portable Document Format
Description:
Collections