Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices

dc.bibliographicCitation.firstPage4397eng
dc.bibliographicCitation.issue16eng
dc.bibliographicCitation.journalTitleSensorseng
dc.bibliographicCitation.volume20eng
dc.contributor.authorYakimchuk, Dzmitry V.
dc.contributor.authorBundyukova, Victoria D.
dc.contributor.authorUstarroz, Jon
dc.contributor.authorTerryn, Herman
dc.contributor.authorBaert, Kitty
dc.contributor.authorKozlovskiy, Artem L.
dc.contributor.authorZdorovets, Maxim V.
dc.contributor.authorKhubezhov, Soslan A.
dc.contributor.authorTrukhanov, Alex V.
dc.contributor.authorTrukhanov, Sergei V.
dc.contributor.authorPanina, Larissa V.
dc.contributor.authorArzumanyan, Grigory M.
dc.contributor.authorMamatkulov, Kahramon Z.
dc.contributor.authorTishkevich, Daria I.
dc.contributor.authorKaniukov, Egor Y.
dc.contributor.authorSivakov, Vladimir
dc.date.accessioned2022-08-18T08:46:53Z
dc.date.available2022-08-18T08:46:53Z
dc.date.issued2020
dc.description.abstractThe modern development of nanotechnology requires the discovery of simple approaches that ensure the controlled formation of functional nanostructures with a predetermined morphology. One of the simplest approaches is the self-assembly of nanostructures. The widespread implementation of self-assembly is limited by the complexity of controlled processes in a large volume where, due to the temperature, ion concentration, and other thermodynamics factors, local changes in diffusion-limited processes may occur, leading to unexpected nanostructure growth. The easiest ways to control the diffusion-limited processes are spatial limitation and localized growth of nanostructures in a porous matrix. In this paper, we propose to apply the method of controlled self-assembly of gold nanostructures in a limited pore volume of a silicon oxide matrix with submicron pore sizes. A detailed study of achieved gold nanostructures' morphology, microstructure, and surface composition at different formation stages is carried out to understand the peculiarities of realized nanostructures. Based on the obtained results, a mechanism for the growth of gold nanostructures in a limited volume, which can be used for the controlled formation of nanostructures with a predetermined geometry and composition, has been proposed. The results observed in the present study can be useful for the design of plasmonic-active surfaces for surface-enhanced Raman spectroscopy-based detection of ultra-low concentration of different chemical or biological analytes, where the size of the localized gold nanostructures is comparable with the spot area of the focused laser beam.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10081
dc.identifier.urihttp://dx.doi.org/10.34657/9119
dc.language.isoengeng
dc.publisherBasel : MDPIeng
dc.relation.doihttps://doi.org/10.3390/s20164397
dc.relation.essn1424-8220
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc620eng
dc.subject.otherGoldeng
dc.subject.otherGrowth mechanismeng
dc.subject.otherNanostructureseng
dc.subject.otherSERSeng
dc.subject.otherTemplate synthesiseng
dc.subject.otherX-ray diffractioneng
dc.subject.otherX-ray photoelectron spectroscopyeng
dc.titleMorphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matriceseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Morphology_and_microstructure.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description: