Computer modeling of single-layer nanocluster formation in a thin SiO2 layer buried in Si by ion mixing and thermal phase decomposition

dc.bibliographicCitation.firstPage225708eng
dc.bibliographicCitation.issue22eng
dc.bibliographicCitation.lastPage15037eng
dc.bibliographicCitation.volume125eng
dc.contributor.authorPrüfer, T.
dc.contributor.authorMöller, W.
dc.contributor.authorHeinig, K.-H.
dc.contributor.authorWolf, D.
dc.contributor.authorEngelmann, H.-J.
dc.contributor.authorXu, X.
dc.contributor.authorVon Borany, J.
dc.date.accessioned2020-07-18T06:12:36Z
dc.date.available2020-07-18T06:12:36Z
dc.date.issued2019
dc.description.abstractA single sheet of Si nanoclusters with an average diameter of about 2 nm has been formed in a 30 nm Si/7 nm SiO2/Si layer stack by 50 and 60 keV Si+ ion-beam mixing at room temperature and fluences between 8.5 ⋯ 1015 and 2.6 ⋯ 1016 ions/cm2 and by subsequent thermal annealing at a temperature above 1000 °C. Computer modeling of the process is accomplished by TRIDYN dynamic ballistic simulation of ion mixing and subsequent lattice kinetic Monte Carlo simulation of the phase decomposition of substoichiometric silicon oxide into Si nanoclusters in a SiO2 matrix. The simulation algorithms are briefly described with special emphasis on the choice of governing parameters for the present system. In comparison to the experimental results, it is concluded that the predicted ion mixing profiles overestimate the interface broadening. This discrepancy is attributed to the neglect of chemical driving forces in connection with thermal-spike induced diffusion, which tends to reconstitute the Si/SiO2 interfaces. With a corresponding correction and a suitable number of Monte Carlo steps, the experimentally obtained areal densities and average diameters of the nanoclusters are successfully reproduced.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3604
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4975
dc.language.isoengeng
dc.publisherCollege Park, MD : American Institute of Physicseng
dc.relation.doihttps://doi.org/10.1063/1.5096451
dc.relation.ispartofseriesJournal of Applied Physics 125 (2019), Nr. 22eng
dc.relation.issn0021-8979
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectIntelligent systemseng
dc.subjectIon beamseng
dc.subjectIonseng
dc.subjectMixingeng
dc.subjectNanoclusterseng
dc.subjectSilicaeng
dc.subjectSilicon oxideseng
dc.subjectComputer modelingeng
dc.subjectGoverning parameterseng
dc.subjectLattice kinetic Monte Carloeng
dc.subjectNanocluster formationeng
dc.subjectPhase decompositionseng
dc.subjectSi/SiO2 interfaceeng
dc.subjectSimulation algorithmseng
dc.subjectThermal-annealingeng
dc.subjectMonte Carlo methodseng
dc.subject.ddc530eng
dc.titleComputer modeling of single-layer nanocluster formation in a thin SiO2 layer buried in Si by ion mixing and thermal phase decompositioneng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJournal of Applied Physicseng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Prüfer et al 2019, Computer modeling of single-layer nanocluster formation.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format
Description:
Collections