Diffusion tensor imaging : structural adaptive smoothing
dc.bibliographicCitation.seriesTitle | WIAS Preprints | eng |
dc.bibliographicCitation.volume | 1232 | |
dc.contributor.author | Tabelow, Karsten | |
dc.contributor.author | Polzehl, Jörg | |
dc.contributor.author | Spokoiny, Vladimir | |
dc.contributor.author | Voss, Henning U. | |
dc.date.accessioned | 2016-03-24T17:38:15Z | |
dc.date.available | 2019-06-28T08:02:34Z | |
dc.date.issued | 2007 | |
dc.description.abstract | Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus, estimation errors of quantities like anisotropy indices or the main diffusion direction used for fiber tracking are relatively large and may significantly confound the accuracy of DTI in clinical or neuroscience applications. Besides pulse sequence optimization, noise reduction by smoothing the data can be pursued as a complementary approach to increase the accuracy of DTI. Here, we suggest an anisotropic structural adaptive smoothing procedure, which is based on the Propagation-Separation method and preserves the structures seen in DTI and their different sizes and shapes. It is applied to artificial phantom data and a brain scan. We show that this method significantly improves the quality of the estimate of the diffusion tensor and hence enables one either to reduce the number of scans or to enhance the input for subsequent analysis such as fiber tracking. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 0946-8633 | |
dc.identifier.uri | https://doi.org/10.34657/2203 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/1869 | |
dc.language.iso | eng | eng |
dc.publisher | Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik | eng |
dc.relation.issn | 0946-8633 | eng |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Diffusion tensor imaging | eng |
dc.subject.other | spatially adaptive smoothing | eng |
dc.title | Diffusion tensor imaging : structural adaptive smoothing | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | WIAS | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 54626266X.pdf
- Size:
- 887.98 KB
- Format:
- Adobe Portable Document Format
- Description: