Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors

dc.contributor.authorPrehal, C.
dc.contributor.authorKoczwara, C.
dc.contributor.authorAmenitsch, H.
dc.contributor.authorPresser, V.
dc.contributor.authorParis, O.
dc.date.accessioned2018-11-27T13:55:21Z
dc.date.available2019-06-28T14:00:23Z
dc.date.issued2018
dc.description.abstractA fundamental understanding of ion charge storage in nanoporous electrodes is essential to improve the performance of supercapacitors or devices for capacitive desalination. Here, we employ in situ X-ray transmission measurements on activated carbon supercapacitors to study ion concentration changes during electrochemical operation. Whereas counter-ion adsorption was found to dominate at small electrolyte salt concentrations and slow cycling speed, ion replacement prevails for high molar concentrations and/or fast cycling. Chronoamperometry measurements reveal two distinct time regimes of ion concentration changes. In the first regime the supercapacitor is charged, and counter- and co-ion concentration changes align with ion replacement and partially co-ion expulsion. In the second regime, the electrode charge remains constant, but the total ion concentration increases. We conclude that the initial fast charge neutralization in nanoporous supercapacitor electrodes leads to a non-equilibrium ion configuration. The subsequent, charge-neutral equilibration slowly increases the total ion concentration towards counter-ion adsorption.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.urihttps://doi.org/10.34657/1652
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/4665
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Group
dc.relation.doihttps://doi.org/10.1038/s41467-018-06612-4
dc.relation.ispartofseriesNature Communicationseng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc530
dc.titleSalt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNature Communicationseng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inm2018092.pdf
Size:
906.82 KB
Format:
Adobe Portable Document Format
Description:
Collections