TiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insights

dc.bibliographicCitation.firstPage25239eng
dc.bibliographicCitation.issue46eng
dc.bibliographicCitation.lastPage25248eng
dc.bibliographicCitation.volume124eng
dc.contributor.authorMaletti, Sebastian
dc.contributor.authorHerzog-Arbeitman, Abraham
dc.contributor.authorOswald, Steffen
dc.contributor.authorSenyshyn, Anatoliy
dc.contributor.authorGiebeler, Lars
dc.contributor.authorMikhailova, Daria
dc.date.accessioned2021-08-24T10:12:26Z
dc.date.available2021-08-24T10:12:26Z
dc.date.issued2020
dc.description.abstractAs one of the beyond-lithium battery concepts, hybrid metal-ion batteries have aroused growing interest. Here, TiNb2O7 (TNO) and VNb9O25 (VNO) materials were prepared using a high-temperature solid-state synthesis and, for the first time, comprehensively examined in hybrid Mg−Li batteries. Both materials adopt ReO3-related structures differing in the interconnection of oxygen polyhedra and the resulting guest ion diffusion paths. We show applicability of the compounds in hybrid cells providing capacities comparable to those reached in Li-ion batteries (LIBs) at room temperature (220 mAh g−1 for TNO and 150 mAh g−1 for VNO, both at 0.1 C), their operability in the temperature range between −10 and 60 °C, and even better capacity retention than in pure LIBs, rendering this hybrid technology superior for long-term application. Post mortem X-ray photoelectron spectroscopy reveals a cathode−electrolyte interface as a key ingredient for providing excellent electrochemical stability of the hybrid battery. A significant contribution of the intercalation pseudocapacitance to charge storage was observed for both materials in Li- and Mg−Li batteries. However, the pseudocapacitive part is higher for TNO than for VNO, which correlates with structural distinctions, providing better accessibility of diffusion pathways for guest cations in TNO and, as a consequence, a higher ionic transport within the crystal structure. © 2020 American Chemical Societyeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6583
dc.identifier.urihttps://doi.org/10.34657/5630
dc.language.isoengeng
dc.publisherWashington, DC : American Chemical Societyeng
dc.relation.doihttps://doi.org/10.1021/acs.jpcc.0c07373
dc.relation.essn1932-7455
dc.relation.ispartofseriesJournal of Physical Chemistry C 124 (2020), Nr. 46eng
dc.relation.issn1932-7447
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectBinary alloyseng
dc.subjectCrystal structureeng
dc.subjectElectrolyteseng
dc.subjectHybrid materialseng
dc.subjectLithium alloyseng
dc.subjectLithium-ion batterieseng
dc.subjectMagnesium alloyseng
dc.subjectMagnesium metallographyeng
dc.subjectMetal ionseng
dc.subjectRhenium alloyseng
dc.subjectSolid-State Batterieseng
dc.subjectX ray photoelectron spectroscopyeng
dc.subjectCapacity retentioneng
dc.subjectDiffusion pathwayseng
dc.subjectElectrochemical stabilitieseng
dc.subjectElectrolyte interfaceseng
dc.subjectHybrid technologyeng
dc.subjectPseudocapacitanceeng
dc.subjectSolid-state synthesiseng
dc.subjectTemperature rangeeng
dc.subjectLithium metallographyeng
dc.subject.ddc530eng
dc.subject.ddc540eng
dc.titleTiNb2O7 and VNB9O25 of ReO3 type in hybrid Mg−Li batteries: Electrochemical and interfacial insightseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleJournal of Physical Chemistry Ceng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acs.jpcc.0c07373.pdf
Size:
3.28 MB
Format:
Adobe Portable Document Format
Description:
Collections