Octonion Polynomials with Values in a Subalgebra
Loading...
Date
2020
Authors
Volume
21
Issue
Journal
Series Titel
Oberwolfach Preprints (OWP)
Book Title
Publisher
Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach
Link to publishers version
Abstract
In this paper, we prove that given an octonion algebra A over a field F, a subring E⊆F and an octonion E-algebra R inside A, the set S of polynomials f(x)∈A[x] satisfying f(R)⊆R is an octonion (S∩F[x])-algebra, under the assumption that either 1/2∈R or char(F)≠0, and R contains the standard generators of A and their inverses. The project was inspired by a question raised by Werner on whether integer-valued octonion polynomials over the reals form a nonassociative ring. We also prove that the polynomials 1p(xp2−x)(xp−x) for prime p are integer-valued in the ring of polynomials A[x] over any real nonsplit Cayley-Dickson algebra A.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.