Corners and edges always scatter

dc.bibliographicCitation.seriesTitleWIAS Preprintseng
dc.bibliographicCitation.volume2020
dc.contributor.authorElschner, Johannes
dc.contributor.authorHu, Guanghui
dc.date.accessioned2016-03-24T17:37:03Z
dc.date.available2019-06-28T08:13:03Z
dc.date.issued2014
dc.description.abstractConsider time-harmonic acoustic scattering problems governed by the Helmholtz equation in two and three dimensions. We prove that bounded penetrable obstacles with corners or edges scatter every incident wave nontrivially, provided the function of refractive index is real-analytic. Moreover, if such a penetrable obstacle is a convex polyhedron or polygon, then its shape can be uniquely determined by the far-field pattern over all observation directions incited by a single incident wave. Our arguments are elementary and rely on the expansion of solutions to the Helmholtz equation.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn2198-5855
dc.identifier.urihttps://doi.org/10.34657/2197
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2905
dc.language.isoengeng
dc.publisherBerlin : Weierstraß-Institut für Angewandte Analysis und Stochastikeng
dc.relation.issn2198-5855eng
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherHelmholtz equationeng
dc.subject.otherinverse medium scatteringeng
dc.subject.otheruniquenesseng
dc.subject.othershape identificationeng
dc.subject.othercorner and wedge domainseng
dc.titleCorners and edges always scattereng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
813334918.pdf
Size:
172.21 KB
Format:
Adobe Portable Document Format
Description: