Spectral dynamics of shift current in ferroelectric semiconductor SbSI

dc.bibliographicCitation.firstPage1929eng
dc.bibliographicCitation.issue6eng
dc.bibliographicCitation.volume116eng
dc.contributor.authorSotome, M.
dc.contributor.authorNakamura, M.
dc.contributor.authorFujioka, J.
dc.contributor.authorOgino, M.
dc.contributor.authorKaneko, Y.
dc.contributor.authorMorimoto, T.
dc.contributor.authorZhang, Y.
dc.contributor.authorKawasaki, M.
dc.contributor.authorNagaosa, N.
dc.contributor.authorTokura, Y.
dc.contributor.authorOgawa, N.
dc.date.accessioned2020-07-18T06:12:41Z
dc.date.available2020-07-18T06:12:41Z
dc.date.issued2019
dc.description.abstractPhotoexcitation in solids brings about transitions of electrons/ holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.eng
dc.description.sponsorshipLeibniz_Fondseng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3636
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5007
dc.language.isoengeng
dc.publisherWashington : National Academy of Scienceseng
dc.relation.doihttps://doi.org/10.1073/pnas.1802427116
dc.relation.ispartofseriesProceedings of the National Academy of Sciences of the United States of America 116 (2019), 6eng
dc.relation.issn0027-8424
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subjectBulk mattereng
dc.subjectFerroelectricityeng
dc.subjectPhotovoltaic effecteng
dc.subjectPicosecond techniqueseng
dc.subjectSolar cellseng
dc.subjectantimony derivativeeng
dc.subjectantimony sulfur iodideeng
dc.subjectiodine derivativeeng
dc.subjectsulfur derivativeeng
dc.subjectunclassified drugeng
dc.subjectArticleeng
dc.subjectdynamicseng
dc.subjectelectric currenteng
dc.subjectelectromagnetic radiationeng
dc.subjectelectron transporteng
dc.subjectfactor analysiseng
dc.subjectferroelectric semiconductoreng
dc.subjectmathematical computingeng
dc.subjectphotoneng
dc.subjectpriority journaleng
dc.subjectterahertz radiationeng
dc.subject.ddc530eng
dc.titleSpectral dynamics of shift current in ferroelectric semiconductor SbSIeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleProceedings of the National Academy of Sciences of the United States of Americaeng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sotome et al 2019, Spectral dynamics of shift current in ferroelectric semiconductor SbSI.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Collections