Spectral dynamics of shift current in ferroelectric semiconductor SbSI

dc.bibliographicCitation.firstPage1929eng
dc.bibliographicCitation.issue6eng
dc.bibliographicCitation.journalTitleProceedings of the National Academy of Sciences of the United States of Americaeng
dc.bibliographicCitation.volume116eng
dc.contributor.authorSotome, M.
dc.contributor.authorNakamura, M.
dc.contributor.authorFujioka, J.
dc.contributor.authorOgino, M.
dc.contributor.authorKaneko, Y.
dc.contributor.authorMorimoto, T.
dc.contributor.authorZhang, Y.
dc.contributor.authorKawasaki, M.
dc.contributor.authorNagaosa, N.
dc.contributor.authorTokura, Y.
dc.contributor.authorOgawa, N.
dc.date.accessioned2020-07-18T06:12:41Z
dc.date.available2020-07-18T06:12:41Z
dc.date.issued2019
dc.description.abstractPhotoexcitation in solids brings about transitions of electrons/ holes between different electronic bands. If the solid lacks an inversion symmetry, these electronic transitions support spontaneous photocurrent due to the geometric phase of the constituting electronic bands: the Berry connection. This photocurrent, termed shift current, is expected to emerge on the timescale of primary photoexcitation process. We observe ultrafast evolution of the shift current in a prototypical ferroelectric semiconductor antimony sulfur iodide (SbSI) by detecting emitted terahertz electromagnetic waves. By sweeping the excitation photon energy across the bandgap, ultrafast electron dynamics as a source of terahertz emission abruptly changes its nature, reflecting a contribution of Berry connection on interband optical transition. The shift excitation carries a net charge flow and is followed by a swing over of the electron cloud on a subpicosecond timescale. Understanding these substantive characters of the shift current with the help of first-principles calculation will pave the way for its application to ultrafast sensors and solar cells.eng
dc.description.fondsLeibniz_Fonds
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/3636
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5007
dc.language.isoengeng
dc.publisherWashington : National Academy of Scienceseng
dc.relation.doihttps://doi.org/10.1073/pnas.1802427116
dc.relation.issn0027-8424
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject.ddc530eng
dc.subject.otherBulk mattereng
dc.subject.otherFerroelectricityeng
dc.subject.otherPhotovoltaic effecteng
dc.subject.otherPicosecond techniqueseng
dc.subject.otherSolar cellseng
dc.subject.otherantimony derivativeeng
dc.subject.otherantimony sulfur iodideeng
dc.subject.otheriodine derivativeeng
dc.subject.othersulfur derivativeeng
dc.subject.otherunclassified drugeng
dc.subject.otherArticleeng
dc.subject.otherdynamicseng
dc.subject.otherelectric currenteng
dc.subject.otherelectromagnetic radiationeng
dc.subject.otherelectron transporteng
dc.subject.otherfactor analysiseng
dc.subject.otherferroelectric semiconductoreng
dc.subject.othermathematical computingeng
dc.subject.otherphotoneng
dc.subject.otherpriority journaleng
dc.subject.otherterahertz radiationeng
dc.titleSpectral dynamics of shift current in ferroelectric semiconductor SbSIeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectPhysikeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sotome et al 2019, Spectral dynamics of shift current in ferroelectric semiconductor SbSI.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Collections