Electron Transport across Vertical Silicon/MoS2/Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene Base Hot Electron Transistors

dc.bibliographicCitation.firstPage9656eng
dc.bibliographicCitation.issue8eng
dc.bibliographicCitation.journalTitleACS Applied Materials and Interfaceseng
dc.bibliographicCitation.lastPage9663eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorBelete, Melkamu
dc.contributor.authorEngström, Olof
dc.contributor.authorVaziri, Sam
dc.contributor.authorLippert, Gunther
dc.contributor.authorLukosius, Mindaugas
dc.contributor.authorKataria, Satender
dc.contributor.authorLemme, Max C.
dc.date.accessioned2021-08-30T12:34:43Z
dc.date.available2021-08-30T12:34:43Z
dc.date.issued2020
dc.description.abstractHeterostructures comprising silicon, molybdenum disulfide (MoS2), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS2 is linearly temperature-dependent for T = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS2, strain at the Si/MoS2 interface, or different electron effective masses in Si and MoS2, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS2. The low barrier formed between Si and MoS2 and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics. Copyright © 2020 American Chemical Society.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6623
dc.identifier.urihttps://doi.org/10.34657/5670
dc.language.isoengeng
dc.publisherWashington, DC : ACS Publicationseng
dc.relation.doihttps://doi.org/10.1021/acsami.9b21691
dc.relation.essn1944-8252
dc.relation.issn1944-8244
dc.rights.licenseACS AuthorChoiceeng
dc.rights.urihttps://acsopenscience.org/open-access/licensing-options/eng
dc.subject.ddc540eng
dc.subject.ddc600eng
dc.subject.other2D materialseng
dc.subject.othercharge carrier transporteng
dc.subject.otherelectron transporteng
dc.subject.othergrapheneeng
dc.subject.otherMoS2eng
dc.subject.otherthermionic emissioneng
dc.subject.otherTMDeng
dc.subject.othervertical heterostructureseng
dc.titleElectron Transport across Vertical Silicon/MoS2/Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene Base Hot Electron Transistorseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIHPeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsami.9b21691.pdf
Size:
2.38 MB
Format:
Adobe Portable Document Format
Description:
Collections