New results on the stability of quasi-static paths of a single particle system with Coulomb friction and persistent contact
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this paper we announce some new mathematical results on the stability of quasi-static paths of a single particle linearly elastic system with Coulomb friction and persistent normal contact with a flat obstacle.A quasi-static path is said to be stable at some value of the load parameter if, for some finite interval of the load parameter thereafter, the dynamic solutions behave continuously with respect to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces, $varepsilon$ (as in singular perturbation problems). In this paper we prove sufficient conditions for stability of quasi-static paths of a single particle linearly elastic system with Coulomb friction and persistent normal contact with a flat obstacle. The present system has the additional difficulty of its non-smoothness: the friction law is a multivalued operator and the dynamic evolutions of this system may have discontinuous accelerations.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.