Site-Selective Real-Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using L-Edge X-Ray Absorption Spectroscopy

dc.bibliographicCitation.firstPage693eng
dc.bibliographicCitation.issue7eng
dc.bibliographicCitation.journalTitleChemPhysChem : a European journal of physical chemistry and chemical physicseng
dc.bibliographicCitation.lastPage700eng
dc.bibliographicCitation.volume22eng
dc.contributor.authorBritz, Alexander
dc.contributor.authorBokarev, Sergey I.
dc.contributor.authorAssefa, Tadesse A.
dc.contributor.authorBajnóczi, Èva G.
dc.contributor.authorNémeth, Zoltán
dc.contributor.authorVankó, György
dc.contributor.authorRockstroh, Nils
dc.contributor.authorJunge, Henrik
dc.contributor.authorBeller, Matthias
dc.contributor.authorDoumy, Gilles
dc.contributor.authorMarch, Anne Marie
dc.contributor.authorSouthworth, Stephen H.
dc.contributor.authorLochbrunner, Stefan
dc.contributor.authorKühn, Oliver
dc.contributor.authorBressler, Christian
dc.contributor.authorGawelda, Wojciech
dc.date.accessioned2022-01-14T07:28:43Z
dc.date.available2022-01-14T07:28:43Z
dc.date.issued2021
dc.description.abstractTime-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7812
dc.identifier.urihttps://doi.org/10.34657/6853
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCH Verl.eng
dc.relation.doihttps://doi.org/10.1002/cphc.202000845
dc.relation.essn1439-7641
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject.ddc540eng
dc.subject.otherelectron transfereng
dc.subject.otherfluorescence detection XASeng
dc.subject.otherhigh energy-resolutioneng
dc.subject.otherhomogeneous catalysiseng
dc.subject.otherphotocatalytic water splittingeng
dc.subject.otherrestricted active space self-consistent field calculationseng
dc.subject.otherultrafast XASeng
dc.subject.otherx-ray absorption spectroscopyeng
dc.titleSite-Selective Real-Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using L-Edge X-Ray Absorption Spectroscopyeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorLIKATeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Site-Selective Real-Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using L-Edge X-Ray Absorption Spectroscopy.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
Collections