Diffusion and interface effects during preparation of all-solid microstructured fibers

dc.bibliographicCitation.firstPage6879eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.journalTitleMaterialseng
dc.bibliographicCitation.volume6eng
dc.contributor.authorKobelke, J.
dc.contributor.authorBierlich, J.
dc.contributor.authorWondraczek, K.
dc.contributor.authorAichele, C.
dc.contributor.authorPan, Z.
dc.contributor.authorUnger, S.
dc.contributor.authorSchuster, K.
dc.contributor.authorBartelt, H.
dc.date.accessioned2020-09-25T12:04:55Z
dc.date.available2020-09-25T12:04:55Z
dc.date.issued2014
dc.description.abstractAll-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4331
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5702
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/ma7096879
dc.relation.issn1996-1944
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subject.ddc620eng
dc.subject.otherFiber manufacturingeng
dc.subject.otherMicrostructured fibereng
dc.subject.otherPhotonic crystal fibereng
dc.subject.otherDesigneng
dc.subject.otherDiffusioneng
dc.subject.otherDissociationeng
dc.subject.otherDoping (additives)eng
dc.subject.otherEvaporationeng
dc.subject.otherFiberseng
dc.subject.otherFluorineeng
dc.subject.otherGermaniumeng
dc.subject.otherOptical fiberseng
dc.subject.otherRefractive indexeng
dc.subject.otherSemiconductor dopingeng
dc.subject.otherSilicaeng
dc.subject.otherDesign parameterseng
dc.subject.otherDopant concentrationseng
dc.subject.otherEquilibrium conditionseng
dc.subject.otherMicrostructured fiberseng
dc.subject.otherMicrostructured optical fiberseng
dc.subject.otherOptical functionalitieseng
dc.subject.otherOptimized planningeng
dc.subject.otherThermal dissociationeng
dc.subject.otherPhotonic crystal fiberseng
dc.titleDiffusion and interface effects during preparation of all-solid microstructured fiberseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kobelke2014.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description: