Diffusion and interface effects during preparation of all-solid microstructured fibers

dc.bibliographicCitation.firstPage6879eng
dc.bibliographicCitation.issue9eng
dc.bibliographicCitation.volume6eng
dc.contributor.authorKobelke, J.
dc.contributor.authorBierlich, J.
dc.contributor.authorWondraczek, K.
dc.contributor.authorAichele, C.
dc.contributor.authorPan, Z.
dc.contributor.authorUnger, S.
dc.contributor.authorSchuster, K.
dc.contributor.authorBartelt, H.
dc.date.accessioned2020-09-25T12:04:55Z
dc.date.available2020-09-25T12:04:55Z
dc.date.issued2014
dc.description.abstractAll-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://doi.org/10.34657/4331
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/5702
dc.language.isoengeng
dc.publisherBasel : MDPI AGeng
dc.relation.doihttps://doi.org/10.3390/ma7096879
dc.relation.ispartofseriesMaterials 6 (2014), Nr. 9eng
dc.relation.issn1996-1944
dc.rights.licenseCC BY-NC-SA 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/eng
dc.subjectFiber manufacturingeng
dc.subjectMicrostructured fibereng
dc.subjectPhotonic crystal fibereng
dc.subjectDesigneng
dc.subjectDiffusioneng
dc.subjectDissociationeng
dc.subjectDoping (additives)eng
dc.subjectEvaporationeng
dc.subjectFiberseng
dc.subjectFluorineeng
dc.subjectGermaniumeng
dc.subjectOptical fiberseng
dc.subjectRefractive indexeng
dc.subjectSemiconductor dopingeng
dc.subjectSilicaeng
dc.subjectDesign parameterseng
dc.subjectDopant concentrationseng
dc.subjectEquilibrium conditionseng
dc.subjectMicrostructured fiberseng
dc.subjectMicrostructured optical fiberseng
dc.subjectOptical functionalitieseng
dc.subjectOptimized planningeng
dc.subjectThermal dissociationeng
dc.subjectPhotonic crystal fiberseng
dc.subject.ddc620eng
dc.titleDiffusion and interface effects during preparation of all-solid microstructured fiberseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleMaterialseng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kobelke2014.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description: