Picosecond Avalanche Detector — working principle and gain measurement with a proof-of-concept prototype

dc.bibliographicCitation.firstPageP10032
dc.bibliographicCitation.issue10
dc.bibliographicCitation.journalTitleJournal of Instrumentationeng
dc.bibliographicCitation.volume17
dc.contributor.authorPaolozzi, L.
dc.contributor.authorMunker, M.
dc.contributor.authorCardella, R.
dc.contributor.authorMilanesio, M.
dc.contributor.authorGurimskaya, Y.
dc.contributor.authorMartinelli, F.
dc.contributor.authorPicardi, A.
dc.contributor.authorRücker, H.
dc.contributor.authorTrusch, A.
dc.contributor.authorValerio, P.
dc.contributor.authorCadoux, F.
dc.contributor.authorCardarelli, R.
dc.contributor.authorDébieux, S.
dc.contributor.authorFavre, Y.
dc.contributor.authorFenoglio, C.A.
dc.contributor.authorFerrere, D.
dc.contributor.authorGonzalez-Sevilla, S.
dc.contributor.authorKotitsa, R.
dc.contributor.authorMagliocca, C.
dc.contributor.authorMoretti, T.
dc.contributor.authorNessi, M.
dc.contributor.authorPizarro Medina, A.
dc.contributor.authorSabater Iglesias, J.
dc.contributor.authorSaidi, J.
dc.contributor.authorVicente Barreto Pinto, M.
dc.contributor.authorZambito, S.
dc.contributor.authorIacobucci, G.
dc.date.accessioned2023-02-06T10:22:46Z
dc.date.available2023-02-06T10:22:46Z
dc.date.issued2022
dc.description.abstractThe Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a (NP)drift(NP)gain structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The signal is then induced by the secondary charges moving inside a thicker drift region. A proof-of-concept monolithic prototype, consisting of a matrix of hexagonal pixels with 100 μm pitch, has been produced using the 130 nm SiGe BiCMOS process by IHP microelectronics. Measurements on probe station and with a 55Fe X-ray source show that the prototype is functional and displays avalanche gain up to a maximum electron gain of 23. A study of the avalanche characteristics, corroborated by TCAD simulations, indicates that space-charge effects due to the large primary charge produced by the conversion of X-rays from the ^55Fe source limits the effective gain.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11300
dc.identifier.urihttp://dx.doi.org/10.34657/10336
dc.language.isoeng
dc.publisherLondon : Inst. of Physics
dc.relation.doihttps://doi.org/10.1088/1748-0221/17/10/p10032
dc.relation.essn1748-0221
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc610
dc.subject.otherParticle tracking detectors (Solid-state detectors)eng
dc.subject.otherPixelated detectors and associated VLSI electronicseng
dc.subject.otherSolid state detectorseng
dc.subject.otherTiming detectorseng
dc.titlePicosecond Avalanche Detector — working principle and gain measurement with a proof-of-concept prototypeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorIHP
wgl.subjectMedizin, Gesundheitger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paolozzi_2022_J_Inst_17_P10032.pdf
Size:
6.88 MB
Format:
Adobe Portable Document Format
Description:
Collections